Proving Resistance Against Invariant Attacks

How to Choose the Round Constants

Christof Beierle, Anne Canteaut, Gregor Leander and Yann Rotella
24 avril 2017
JC2 - La Bresse - France
Ruhr-Universität Bochum, Germany
Inria de Paris

The invariant supspace attack [Leander et al. 11]

Linear subspace \boldsymbol{V} invariant under $\boldsymbol{E}_{\boldsymbol{k}}$.

$$
E_{k}(V)=V
$$

Table of contents

1. Proving resistance against the attack
2. How to choose better constants?

The nonlinear invariant attack [Todo, Leander, Sasaki 16]

Partition of \mathbb{F}_{2}^{n} invariant under $\boldsymbol{E}_{\boldsymbol{k}}$.

$$
E_{k}(\mathcal{S})=\mathcal{S} \text { or } E_{k}(\mathcal{S})=\mathbb{F}_{2}^{n} \backslash \mathcal{S}
$$

Definition (Invariant)

Let \boldsymbol{g} a Boolean function such that $\boldsymbol{g}(\boldsymbol{x})=\mathbf{1}$ iff $\boldsymbol{x} \in \mathcal{S}$, then

$$
\forall x \in \mathbb{F}_{2}^{n}, g \circ E_{k}(x)+g(x)=c \text { with } c=0 \text { or } c=1
$$

\boldsymbol{g} is called an invariant for $\boldsymbol{E}_{\boldsymbol{k}}$.

The case of SPN ciphers

Definition (linear structure)
$\operatorname{LS}(g)=\left\{\alpha \in \mathbb{F}_{2}^{\boldsymbol{n}}: x \mapsto g(x+\alpha)+g(x)\right.$ is constant $\}$
Two conditions on g

- $\left(\boldsymbol{k}_{\boldsymbol{i}}+\boldsymbol{k}_{j}\right)$ has to be a linear structure of \boldsymbol{g}.
- LS(g) is invariant under \boldsymbol{L}.

Simple key schedule

If $\boldsymbol{k}_{i}=\boldsymbol{k}+\boldsymbol{c}_{\boldsymbol{i}}$,

$$
\text { Let } \boldsymbol{D}=\left\{\left(c_{i}+c_{j}\right)\right\} \text { and }
$$

$\boldsymbol{W}_{L}(\boldsymbol{D})=$ smallest subspace invariant under L which contains \boldsymbol{D}.

Question

Is there a non-trivial invariant \boldsymbol{g} for the Sbox-layer such that

$$
W_{L}(D) \subseteq \mathrm{LS}(g) ?
$$

Proving resistance against the attack

The simple case

If $\operatorname{dim} W_{L}(D) \geq n-1$,
Then the invariant attack does not apply.

- Skinny-64. $\operatorname{dim} W_{L}(D)=64$
- Prince. $\operatorname{dim} \boldsymbol{W}_{L}(\boldsymbol{D})=\mathbf{5 6} \checkmark+$ other techniques
- Mantis-7. $\operatorname{dim} \boldsymbol{W}_{L}(D)=42 \sqrt{ }+$ other techniques
- Midori-64. $\operatorname{dim} W_{L}(D)=16 x$

Maximizing the dimension of $W_{L}(c)$

$$
W_{L}(c)=\left\langle L^{t}(c), t \in \mathbb{N}\right\rangle
$$

$\operatorname{dim} W_{L}(c)=$ smallest \boldsymbol{d} such that there exist $\lambda_{0}, \ldots, \lambda_{\boldsymbol{d}} \in \mathbb{F}_{2}$:

$$
\sum_{t=0}^{d} \lambda_{t} L^{t}(c)=0
$$

$\operatorname{dim} W_{L}(c)$ is the degree of the minimal polynomial of \boldsymbol{c}

Theorem

There exists \boldsymbol{c} such that $\boldsymbol{\operatorname { d i m }} \boldsymbol{W}_{\mathbf{L}}(\boldsymbol{c})=\boldsymbol{d}$ if and only if \boldsymbol{d} is the degree of a divisor of the minimal polynomial of \boldsymbol{L}.

$$
\max _{c \in \mathbb{F}_{2}^{n}} \operatorname{dim} W_{L}(c)=\operatorname{deg} \operatorname{Min}_{L}
$$

How to choose better constants?

Example

- LED.
$\operatorname{Min}_{L}=\left(X^{8}+X^{7}+X^{5}+X^{3}+1\right)^{4}\left(X^{8}+X^{7}+X^{6}+X^{5}+X^{2}+1\right)^{4}$
then there exist some \boldsymbol{c} such that $\operatorname{dim} W_{L}(c)=64$
- Skinny-64. $\operatorname{Min}_{L}=X^{16}+1=(X+1)^{16}$ then there exist some c such that $\operatorname{dim} W_{L}(c)=\boldsymbol{d}$ for any $\mathbf{1} \leq \boldsymbol{d} \leq \mathbf{1 6}$
- Prince.
$\operatorname{Min}_{L}=\left(X^{4}+X^{3}+X^{2}+X+1\right)^{2}\left(X^{2}+X+1\right)^{4}(X+1)^{4}$ $\max _{c} \operatorname{dim} W_{L}(c)=20$
- Mantis and Midori. $\operatorname{Min}_{L}=(X+1)^{6}$ $\max _{c} \operatorname{dim} W_{L}(c)=6$

Rational canonical form

Definition

When $\operatorname{deg}\left(\operatorname{Min}_{L}\right)=\boldsymbol{n}, \boldsymbol{L}$ is equivalent to the companion matrix:

$$
C\left(\operatorname{Min}_{L}\right)=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & & & & \\
0 & 0 & 0 & \ldots & 1 \\
p_{0} & p_{1} & p_{2} & \ldots & p_{n-1}
\end{array}\right)
$$

More generally

$$
\left(\begin{array}{cccc}
C\left(Q_{1}\right) & & & \\
& C\left(Q_{2}\right) & & \\
& & \ddots & \\
& & & C\left(Q_{r}\right)
\end{array}\right)
$$

$\boldsymbol{Q}_{1}=\operatorname{Min}_{L}, \boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{r}$ are the invariant factors of \boldsymbol{L}, with $\boldsymbol{Q}_{r}|..| \boldsymbol{Q}_{\mathbf{1}}$.

Example

For Prince.

$$
\begin{aligned}
\operatorname{Min}_{L}(X) & =X^{20}+X^{18}+X^{16}+X^{14}+X^{12}+X^{8}+X^{6}+X^{4}+X^{2}+1 \\
& =\left(X^{4}+X^{3}+X^{2}+X+1\right)^{2}\left(X^{2}+X+1\right)^{4}(X+1)^{4}
\end{aligned}
$$

8 invariant factors:

$$
\begin{aligned}
Q_{1}(X) & =Q_{2}(X) \\
& =X^{20}+X^{18}+X^{16}+X^{14}+X^{12}+X^{8}+X^{6}+X^{4}+X^{2}+1 \\
Q_{3}(X) & =Q_{4}(X)=X^{8}+X^{6}+X^{2}+1=(X+1)^{4}\left(X^{2}+X+1\right)^{2} \\
Q_{5}(X) & =Q_{6}(X)=Q_{7}(X)=Q_{8}(X)=(X+1)^{2}
\end{aligned}
$$

Maximizing the dimension of $W_{L}\left(c_{1}, \ldots, c_{t}\right)$

Theorem

Let $\boldsymbol{Q}_{\mathbf{1}}, \boldsymbol{Q}_{2}, \ldots, \boldsymbol{Q}_{\boldsymbol{r}}$ be the \boldsymbol{r} invariant factors of \boldsymbol{L}. For any $\boldsymbol{t} \leq \boldsymbol{r}$,

$$
\max _{c_{1}, \ldots, c_{t}} \operatorname{dim} W_{L}\left(c_{1}, \ldots, c_{t}\right)=\sum_{i=1}^{t} \operatorname{deg} Q_{i}
$$

We need r elements to get $\boldsymbol{W}_{L}(D)=\mathbb{F}_{2}^{\boldsymbol{n}}$.

For Prince.

For $t=5, \operatorname{maxdim} W_{L}\left(c_{1}, \ldots, c_{5}\right)=20+20+8+8+2=58$
We need 8 elements to get the full space.
Mantis and Midori. $r=16$ invariant factors
$Q_{1}(X)=\ldots, Q_{8}(X)=(X+1)^{6}$ and $Q_{9}(X)=\ldots, Q_{16}(X)=(X+1)^{2}$
We need 16 elements to get the full space.

Maximum dimension for \#D constants

For random constants

For $\boldsymbol{t} \geq \boldsymbol{r}$,

$$
\underset{c_{1}, \ldots, c_{t} \leftarrow \mathbb{F}_{2}^{n}}{\operatorname{Pr}}\left[W_{L}\left(c_{1}, \cdots, c_{t}\right)=\mathbb{F}_{2}^{n}\right]
$$

can be computed from the degrees of the irreducible factors of Min_{L} and from the invariant factors of \boldsymbol{L}.

LED.

$$
\begin{aligned}
\operatorname{Min}_{L}(X)= & \left(X^{8}+X^{7}+X^{5}+X^{3}+1\right)^{4}\left(X^{8}+X^{7}+X^{6}+X^{5}+X^{2}+1\right)^{4} \\
& \operatorname{Pr}_{\substack{5}}\left[\mathbb{F}_{2}^{64}\right.
\end{aligned}
$$

Probability to achieve the full dimension

Conclusion

Easy to prevent the attack:

- by choosing a linear layer which has a few invariant factors
- by choosing appropriate round constants

Open question: Can we use different invariants for the Sbox-layer and the linear layer?

Conclusion

Easy to prevent the attack:

- by choosing a linear layer which has a few invariant factors
- by choosing appropriate round constants

Open question: Can we use different invariants for the Sbox-layer and the linear layer?

