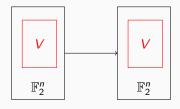
Proving Resistance Against Invariant Attacks

How to Choose the Round Constants

Christof Beierle, Anne Canteaut, Gregor Leander and <u>Yann Rotella</u> 24 avril 2017 JC2 - La Bresse - France

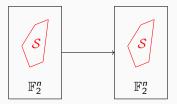
Ruhr-Universität Bochum, Germany Inria de Paris Linear subspace V invariant under E_k .



 $E_k(V) = V$

- 1. Proving resistance against the attack
- 2. How to choose better constants?

Partition of \mathbb{F}_2^n invariant under \boldsymbol{E}_k .



$$E_k(\mathcal{S}) = \mathcal{S}$$
 or $E_k(\mathcal{S}) = \mathbb{F}_2^n \setminus \mathcal{S}$

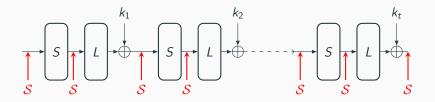
Definition (Invariant)

Let g a Boolean function such that g(x) = 1 iff $x \in S$, then

$$\forall x \in \mathbb{F}_2^n$$
, $g \circ E_k(x) + g(x) = c$ with $c = 0$ or $c = 1$

g is called an invariant for E_k .

The case of SPN ciphers



Definition (linear structure) $LS(g) = \{ \alpha \in \mathbb{F}_2^n : x \mapsto g(x + \alpha) + g(x) \text{ is constant} \}$

Two conditions on g

- $(k_i + k_j)$ has to be a linear structure of g.
- LS(g) is invariant under L.

If
$$k_i = k + c_i$$
,
Let $D = \{(c_i + c_j)\}$ and
 $W_L(D) =$ smallest subspace invariant under L which contains D .

Question

Is there a non-trivial invariant ${m g}$ for the Sbox-layer such that

 $W_L(D) \subseteq LS(g)$?

Proving resistance against the attack

If dim $W_L(D) \ge n-1$,

Then the invariant attack does not apply.

- Skinny-64. dim W_L(D) = 64 ✓
- Prince. dim $W_L(D) = 56 \checkmark +$ other techniques
- Mantis-7. dim $W_L(D) = 42 \checkmark +$ other techniques
- Midori-64. dim W_L(D) = 16 X

$$W_L(c) = \langle L^t(c), t \in \mathbb{N} \rangle$$

dim $W_L(c)$ = smallest d such that there exist $\lambda_0, ..., \lambda_d \in \mathbb{F}_2$:

$$\sum_{t=0}^d \lambda_t L^t(c) = 0$$

dim $W_L(c)$ is the degree of the minimal polynomial of c

Theorem

There exists c such that dim $W_L(c) = d$ if and only if d is the degree of a divisor of the minimal polynomial of L.

 $\max_{c\in\mathbb{F}_2^n}\dim W_L(c)=\deg \operatorname{Min}_L$

How to choose better constants?

Example

• LED.

 $Min_{L} = (X^{8} + X^{7} + X^{5} + X^{3} + 1)^{4}(X^{8} + X^{7} + X^{6} + X^{5} + X^{2} + 1)^{4}$ then there exist some c such that dim $W_{L}(c) = 64$

- Skinny-64. Min_L = $X^{16} + 1 = (X + 1)^{16}$ then there exist some c such that dim $W_L(c) = d$ for any $1 \le d \le 16$
- Prince.

 $Min_{L} = (X^{4} + X^{3} + X^{2} + X + 1)^{2}(X^{2} + X + 1)^{4}(X + 1)^{4}$ $max_{c} \dim W_{L}(c) = 20$

• Mantis and Midori. $Min_L = (X + 1)^6$ $max_c \dim W_L(c) = 6$

Rational canonical form

Definition

When $deg(Min_L) = n$, L is equivalent to the companion matrix:

$$C(\mathsf{Min}_{L}) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & & & \\ 0 & 0 & 0 & \dots & 1 \\ p_{0} & p_{1} & p_{2} & \dots & p_{n-1} \end{pmatrix}$$

More generally

$$\left(\begin{array}{ccc} C(Q_1) & & \\ & C(Q_2) & \\ & & \ddots & \\ & & & C(Q_r) \end{array}\right)$$

 $Q_1 = \operatorname{Min}_L, Q_1, \ldots, Q_r$ are the invariant factors of L, with $Q_r | ... | Q_1$.

For Prince.

$$\operatorname{Min}_{L}(X) = X^{20} + X^{18} + X^{16} + X^{14} + X^{12} + X^{8} + X^{6} + X^{4} + X^{2} + 1$$

= $(X^{4} + X^{3} + X^{2} + X + 1)^{2}(X^{2} + X + 1)^{4}(X + 1)^{4}$

8 invariant factors:

$$Q_1(X) = Q_2(X)$$

= $X^{20} + X^{18} + X^{16} + X^{14} + X^{12} + X^8 + X^6 + X^4 + X^2 + 1$
$$Q_3(X) = Q_4(X) = X^8 + X^6 + X^2 + 1 = (X + 1)^4 (X^2 + X + 1)^2$$

$$Q_5(X) = Q_6(X) = Q_7(X) = Q_8(X) = (X + 1)^2$$

Maximizing the dimension of $W_L(c_1, \ldots, c_t)$

Theorem

Let Q_1, Q_2, \ldots, Q_r be the r invariant factors of L. For any $t \leq r$,

$$\max_{c_1,\ldots,c_t} \dim W_L(c_1,\ldots,c_t) = \sum_{i=1}^t \deg Q_i.$$

We need **r** elements to get $W_L(D) = \mathbb{F}_2^n$.

For Prince.

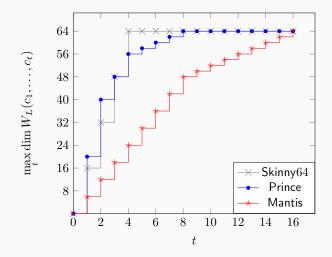
For t = 5, max dim $W_L(c_1, \ldots, c_5) = 20 + 20 + 8 + 8 + 2 = 58$

We need **8** elements to get the full space. Mantis and Midori. r = 16 invariant factors

$$Q_1(X) = \dots, Q_8(X) = (X+1)^6$$
 and $Q_9(X) = \dots, Q_{16}(X) = (X+1)^2$

We need **16** elements to get the full space.

Maximum dimension for #D constants



For $t \geq r$,

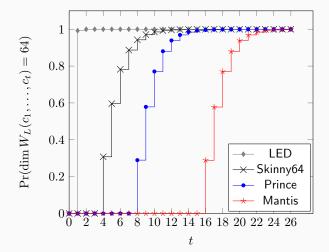
$$\Pr_{c_1,\ldots,c_t \stackrel{s}{\leftarrow} \mathbb{F}_2^n} [W_L(c_1,\cdots,c_t) = \mathbb{F}_2^n]$$

can be computed from the degrees of the irreducible factors of Min_L and from the invariant factors of L.

LED.

$$\operatorname{Min}_{L}(X) = (X^{8} + X^{7} + X^{5} + X^{3} + 1)^{4} (X^{8} + X^{7} + X^{6} + X^{5} + X^{2} + 1)^{4}$$
$$\Pr_{c \leftarrow \mathbb{F}_{2}^{64}} [W_{L}(c) = \mathbb{F}_{2}^{64}] = (1 - 2^{-8})^{2} \simeq 0.9922$$

Probability to achieve the full dimension



Easy to prevent the attack:

- by choosing a linear layer which has a few invariant factors
- by choosing appropriate round constants

Open question: Can we use different invariants for the Sbox-layer and the linear layer?

Easy to prevent the attack:

- by choosing a linear layer which has a few invariant factors
- by choosing appropriate round constants

Open question: Can we use different invariants for the Sbox-layer and the linear layer?

