GEneric Attacks on Duplex-BAsED AEAD MODES

 Small cycles and large components

 Small cycles and large components}

Henri Gilbert, Rachelle Heim Boissier, Louiza Khati, Yann Rotella

ANSSI, Université de Versailles Saint Quentin en Yvelines

Frisiacrypt 2022, Terschelling, The Netherlands

UNIVERSITÉ DE VERSAILLES
ST-QUENTIN-EN-YVELINES
université paris-saclay

Graph of function

$$
f: \mathcal{S} \rightarrow \mathcal{S} \text { where }|\mathcal{S}|=n=2^{c}
$$

Graph of Function

$$
f: S \rightarrow \mathcal{S} \text { where }|\mathcal{S}|=n=2^{c}
$$

- A collection of :
- a collection of trees,
- linked by cycles (components)

Graph of Function

$$
f: \mathcal{S} \rightarrow \mathcal{S} \text { where }|\mathcal{S}|=n=2^{c}
$$

- A collection of :
- a collection of trees,
- linked by cycles (components)

We call $\mu(x)$ and $\lambda(x)$ the cycle length and tail length respectively

RELEVANT VALUES

DEFINITION (v -COMPONENT)

let $0<v<\frac{1}{2}$. A v-component is a component that has a cycle of size at most $n^{\frac{1}{2}-v}$.

RELEVANT VALUES

DEFINITION (v-COMPONENT)

let $0<v<\frac{1}{2}$. A v-component is a component that has a cycle of size at most $n^{\frac{1}{2}-v}$.

DEFINITION ((s, v)-COMPONENT)
let $0<v<\frac{1}{2}$ and $0<s<1$. A (s, v)-component is a component whose size is greater or equal to $n s$ and whose cycle is of size at most $n^{\frac{1}{2}-v}$.

Previous works

- It is known that $\mu(x)$ and $\lambda(x)$ are both on average $\sqrt{\pi n / 8}$. See famous "Random mapping statistics, Flajolet and Odlyzko" in 1989

PREVIOUS WORKS

- It is known that $\mu(x)$ and $\lambda(x)$ are both on average $\sqrt{\pi n / 8}$. See famous "Random mapping statistics, Flajolet and Odlyzko" in 1989
- But, the probability that $\mu(x)<n^{\frac{1}{2}-v}$ is roughly

$$
\frac{\sqrt{2 \pi}}{2 n^{v}}
$$

Previous works

- It is known that $\mu(x)$ and $\lambda(x)$ are both on average $\sqrt{\pi n / 8}$. See famous "Random mapping statistics, Flajolet and Odlyzko" in 1989
- But, the probability that $\mu(x)<n^{\frac{1}{2}-v}$ is roughly

$$
\frac{\sqrt{2 \pi}}{2 n^{v}}
$$

Harris 1960 : "Probability Distributions Related to Random Mappings"

Previous works

- It is known that $\mu(x)$ and $\lambda(x)$ are both on average $\sqrt{\pi n / 8}$. See famous "Random mapping statistics, Flajolet and Odlyzko" in 1989
- But, the probability that $\mu(x)<n^{\frac{1}{2}-v}$ is roughly

$$
\frac{\sqrt{2 \pi}}{2 n^{v}}
$$

Harris 1960 : "Probability Distributions Related to Random Mappings"

- Also, the probability that a graph has a (s, v)-component is roughly

$$
\sqrt{\frac{2(1-s)}{\pi s}} n^{-v}
$$

Previous works

- It is known that $\mu(x)$ and $\lambda(x)$ are both on average $\sqrt{\pi n / 8}$. See famous "Random mapping statistics, Flajolet and Odlyzko" in 1989
- But, the probability that $\mu(x)<n^{\frac{1}{2}-v}$ is roughly

$$
\frac{\sqrt{2 \pi}}{2 n^{v}}
$$

Harris 1960 : "Probability Distributions Related to Random Mappings"

- Also, the probability that a graph has a (s, v)-component is roughly

$$
\sqrt{\frac{2(1-s)}{\pi s}} n^{-v}
$$

De Laurentis, Crypto 1987, "Components and Cycles of a random function"

Duplex AEAD

Security of Duplex

Simplified Beyond conventional security in sponge-based authenticated encryption modes [Jovanovic, Luykx, Mennink, Sasaki, Yasuda, JoC 2019]

$$
\mathcal{T} \ll \min \left\{2^{\frac{b}{2}}, \frac{2^{c}}{\alpha}, 2^{\kappa}\right\} \text { and } q_{d} \ll 2^{\tau}
$$

where, $\alpha<r$, where q_{d} is the number of forgery attempts.

Security of Duplex

Simplified Beyond conventional security in sponge-based authenticated encryption modes [Jovanovic, Luykx, Mennink, Sasaki, Yasuda, JoC 2019]

$$
\mathcal{T} \ll \min \left\{2^{\frac{b}{2}}, \frac{2^{c}}{\alpha}, 2^{\kappa}\right\} \text { and } q_{d} \ll 2^{\tau}
$$

where, $\alpha<r$, where q_{d} is the number of forgery attempts. So duplex construction is proven for $2^{\frac{c}{2}}$, and known generic attacks are in $\frac{\frac{2}{}^{c}}{\alpha}$

ObSERVATION IN DECRYPTION MODE

Let $C_{\beta}^{\ell}=\beta_{\ell}=\underbrace{\beta\|\cdots\| \beta}_{\ell}$.

ObSERVATION IN DECRYPTION MODE

Let $C_{\beta}^{\ell}=\beta_{\ell}=\underbrace{\beta\|\cdots\| \beta}_{\ell}$. Then the decryption of C_{β}^{ℓ} corresponds to the

 iteration of

The attack

The attack is a forgery in $O\left(2^{\frac{3 c}{4}}\right)$ and there is no release of unverified plaintexts.

The attack

The attack is a forgery in $O\left(2^{\frac{3 c}{4}}\right)$ and there is no release of unverified plaintexts.

Precomputation : find a β such that f_{β} has a (s, v) component.

The attack

The attack is a forgery in $O\left(2^{\frac{3 c}{4}}\right)$ and there is no release of unverified plaintexts.

Precomputation : find a β such that f_{β} has a (s, v) component. Online : input (N, A, C, T) with N, A possibly different and $C=C_{\beta}^{\ell}$ with $\ell=\gamma^{\frac{c}{2}}$.

The attack

The attack is a forgery in $O\left(2^{\frac{3 c}{4}}\right)$ and there is no release of unverified plaintexts.

Precomputation : find a β such that f_{β} has a (s, v) component. Online : input (N, A, C, T) with N, A possibly different and $C=C_{\beta}^{\ell}$ with $\ell=\gamma 2^{\frac{c}{2}}$. And T being derived from a value of the cycle of $f_{\beta}\left(n^{\frac{1}{2}-v}\right.$ possibilities at most)

Precomputation

- detecting v-components : Brent's algorithm

Precomputation

- detecting v-components : Brent's algorithm
- (s, v) costs too much, so we use an approximation (CLT)

OnLINE

- Input N, A, C_{β}^{ℓ} and a proportion of possible tags (with respect to cycle's values)

OnLINE

- Input N, A, C_{β}^{ℓ} and a proportion of possible tags (with respect to cycle's values)
- Possibly for different nonces (you might be outside the s-component)

OnLINE

- Input N, A, C_{β}^{ℓ} and a proportion of possible tags (with respect to cycle's values)
- Possibly for different nonces (you might be outside the s-component)

$$
\text { Complexity } O\left(2^{\frac{3 c}{4}}\right)
$$

EXPERIMENTAL VERIFICATION

Statistics verified up to small c values.

Specific modes and padding

Key recovery is possible and attack applicable to several proposals :

Specific modes and padding

Key recovery is possible and attack applicable to several proposals :

- Cyclist (Xoodyak) : 2^{148}
- MonkeyDuplex : Ketje, KNOT and NORX v2

Specific modes and padding

Key recovery is possible and attack applicable to several proposals :

- Cyclist (Xoodyak) : 2^{148}
- MonkeyDuplex : Ketje, KNOT and NORX v2
- Motorist : Keyak

What frustrates the attack

- Adding key material in the final phase

What frustrates the attack

- Adding key material in the final phase
- Use a ρ-like application (Beetle, Subterranean)

