OPEN PROBLEM IN BOOLEAN FUNCTIONS
 Finding Dahus

Yann Rotella

Université de Versailles Saint Quentin en Yvelines
Frisiacrypt 2022, Terschelling, The Netherlands

université paris-saclay

RESILIENCY

A function f is said k-resilient if and only if for any g with less than k variables,

$$
f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)+g\left(x_{i_{0}}, x_{i_{1}}, \ldots, x_{i_{k-1}}\right)
$$

is balanced.

RESILIENCY

A function f is said k-resilient if and only if for any g with less than k variables,

$$
f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)+g\left(x_{i_{0}}, x_{i_{1}}, \ldots, x_{i_{k-1}}\right)
$$

is balanced. This is equivalent to say that

$$
W_{f}(a)=0
$$

for all a of Hamming weight smaller than or equal to k [Car21].

RESILIENCY

A function f is said k-resilient if and only if for any g with less than k variables,

$$
f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)+g\left(x_{i_{0}}, x_{i_{1}}, \ldots, x_{i_{k-1}}\right)
$$

is balanced. This is equivalent to say that

$$
W_{f}(a)=0
$$

for all a of Hamming weight smaller than or equal to k [Car21]. Example :

$$
f=x_{0} x_{1} x_{2}+x_{3}+x_{4}
$$

Algebraic Immunity

The algebraic immunity of a Boolean function f is

$$
\mathrm{AI}(f)=\min _{g \neq 0}\{\operatorname{deg}(g) \mid f g=0 \text { or } g(f+1)=0\}
$$

Algebraic Immunity

The algebraic immunity of a Boolean function f is

$$
\mathrm{AI}(f)=\min _{g \neq 0}\{\operatorname{deg}(g) \mid f g=0 \text { or } g(f+1)=0\}
$$

Example :

$$
f=x_{0} x_{1} x_{2}+x_{3}+x_{4}
$$

Degree and Resiliency [Sieg84]

Let f be an n-variable Boolean function, then when $\operatorname{deg}(f)>1$,

$$
\operatorname{deg}(f)+\operatorname{res}(f) \leq n-1
$$

Degree and Resiliency [Sieg84]

Let f be an n-variable Boolean function, then when $\operatorname{deg}(f)>1$,

$$
\operatorname{deg}(f)+\operatorname{res}(f) \leq n-1
$$

Example :

$$
f=x_{0} x_{1} x_{2}+x_{3}+x_{4}
$$

Bound on algebraic Immunity

For any f with n variables,

$$
\mathrm{AI}(f) \leq\lceil n / 2\rceil
$$

Bound on algebraic Immunity

For any f with n variables,

$$
\mathrm{AI}(f) \leq\lceil n / 2\rceil
$$

Example :

$$
f=x_{0} x_{1} x_{2}+x_{3}+x_{4}
$$

Goldreich's PRNG [G00]

- Seed is $x_{1}, x_{2}, \ldots, x_{n}$
- For any output bit $y_{i}=f\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{c}}\right)$

Goldreich's PRNG [G00]

- Seed is $x_{1}, x_{2}, \ldots, x_{n}$
- For any output bit $y_{i}=f\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{c}}\right)$

Question : How much can you output with $f=x_{0} x_{1} x_{2}+x_{3}+x_{4}$?

Goldreich's PRNG [G00]

- Seed is $x_{1}, x_{2}, \ldots, x_{n}$
- For any output bit $y_{i}=f\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{c}}\right)$

Question : How much can you output with $f=x_{0} x_{1} x_{2}+x_{3}+x_{4}$?
resiliency and algebraic immunity

OpEN PROBLEM

On the algebraic immunity - Resiliency trade-off, implications for Goldreich's Pseudorandom Generator - A. Dupin, P. Méaux and M. Rossi - eprint 2021/649

OPEN PROBLEM

On the algebraic immunity - Resiliency trade-off, implications for Goldreich's Pseudorandom Generator - A. Dupin, P. Méaux and M. Rossi - eprint 2021/649
Conjecture
For all $0 \leq k \leq \ell$, for all $n>k+1$, there exists an n-variable function such that

$$
\operatorname{res}(f)=k \text { and } \operatorname{AI}(f)=\min (\lceil n / 2\rceil, n-k-1)
$$

WhY is it interesting?

- The two criteria are used differently

Why is it interesting?

- The two criteria are used differently
- Previous constructions do not work

Why is it interesting?

- The two criteria are used differently
- Previous constructions do not work
- Exhaustively checked up to 6 variables

Why is it interesting?

- The two criteria are used differently
- Previous constructions do not work
- Exhaustively checked up to 6 variables
- Goal is more precise

