# Higher order derivatives 

OR CUBE, OR ALGEBRAIC, OR INTEGRAL

Yann Rotella

Université de Versailles Saint Quentin en Yvelines
kodeketa eta kriptografiaren egunak Hendaye, le 14 avril 2022


## Outline

REPRESENTATION

Degree

DIVISION PROPERTY

AtTACK STRATEGIES

RANDOM DIRECTIONS

## The Algebraic Normal Form

$f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ Then $f$ can be uniquely represented as an element of

$$
\mathbb{F}_{2}\left[x_{0}, \ldots, x_{n-1}\right] /\left(x_{0}^{2}-x_{0}, \ldots, x_{n-1}^{2}-x_{n-1}\right)
$$

That is a sum of monomials, i.e. for some $u \in \mathbb{F}_{2}^{n}$

$$
x^{u}=\prod_{i=0}^{n-1} x_{i}^{u_{i}}
$$

Example : $x_{0} x_{2} x_{3}=x^{10110000}$

## The Algebraic Normal Form

$f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ Then $f$ can be uniquely represented as an element of

$$
\mathbb{F}_{2}\left[x_{0}, \ldots, x_{n-1}\right] /\left(x_{0}^{2}-x_{0}, \ldots, x_{n-1}^{2}-x_{n-1}\right)
$$

That is a sum of monomials, i.e. for some $u \in \mathbb{F}_{2}^{n}$

$$
x^{u}=\prod_{i=0}^{n-1} x_{i}^{u_{i}}
$$

Example : $x_{0} x_{2} x_{3}=x^{10110000}$

$$
f\left(x_{0}, \ldots, x_{n-1}\right)=\bigoplus_{u \in \mathbb{F}_{2}^{n}} c_{u} x^{u}
$$

with $c_{u} \in \mathbb{F}_{2}$.

## Truth table and Monomials

$$
\begin{gathered}
f\left(x_{0}, \ldots, x_{n-1}\right)=\bigoplus_{u \in \mathbb{F}_{2}^{n}} c_{u} x^{u} \\
f(a)=\bigoplus_{u<a} c_{u} \text { and } c_{u}=\bigoplus_{a<u} f(a)
\end{gathered}
$$

Where $a \prec u$ iff $\operatorname{supp}(a) \subset \operatorname{supp}(u)$

## Truth table and Monomials

$$
\begin{gathered}
f\left(x_{0}, \ldots, x_{n-1}\right)=\bigoplus_{u \in \mathbb{F}_{2}^{n}} c_{u} x^{u} \\
f(a)=\bigoplus_{u<a} c_{u} \text { and } c_{u}=\bigoplus_{a<u} f(a)
\end{gathered}
$$

Where $a \prec u$ iff $\operatorname{supp}(a) \subset \operatorname{supp}(u)$ Also

$$
\operatorname{wt}(u)=\# \operatorname{supp}(u)
$$

## Functions

A function from $\mathbb{F}_{2}^{n}$ to $\mathbb{F}_{2}^{m}$ is represented as a collection of $m$ boolean functions, called component functions.

- For permutations, the monomial $x_{0} x_{1} \cdots x_{n-1}$ never appears
- A random function has its monomials appearing each with probability $1 / 2$ in each component function.


## REPRESENTATION

## Degree

## DIVISION PROPERTY

Attack strategies

RANDOM DIRECTIONS

## Higher-order differential attacks [Lai 94]

$$
f\left(x_{0}, \ldots, x_{n-1}\right)=\bigoplus_{u \in \mathbb{F}_{2}^{n}} c_{u} x^{u}
$$

DEFINITION (MULTIVARIATE DEGREE)

$$
d=\operatorname{deg}(f)=\max \left\{\operatorname{wt}(u), c_{u}=1\right\}
$$

## Higher-order differential attacks [Lai 94]

$$
f\left(x_{0}, \ldots, x_{n-1}\right)=\bigoplus_{u \in \mathbb{F}_{2}^{\prime}} c_{u} x^{u}
$$

## DEFINITION (MULTIVARIATE DEGREE)

$$
d=\operatorname{deg}(f)=\max \left\{\mathrm{wt}(u), c_{u}=1\right\}
$$

Distinguisher :
For all linear space $V$, with $\operatorname{dim}(V) \geq d+1$,

$$
g: x \mapsto \sum_{v \in V} f(x+v)
$$

is constant to zero.

## DEGREE EVALUATION

At different level :

- For any $F$ and $G, \operatorname{deg}(F \circ G) \leq \operatorname{deg}(F) \times \operatorname{deg}(G)$


## DEGREE EVALUATION

At different level :

- For any $F$ and $G, \operatorname{deg}(F \circ G) \leq \operatorname{deg}(F) \times \operatorname{deg}(G)$
- A better bound by A. Canteau and C. Boura [2011, FSE]


## DEGREE EVALUATION

At different level :

- For any $F$ and $G, \operatorname{deg}(F \circ G) \leq \operatorname{deg}(F) \times \operatorname{deg}(G)$
- A better bound by A. Canteau and C. Boura [2011, FSE]
- Better upper bound when the structure is specific [CGGLRS, 2020]


## Going Further

What is missing?

## Going further

What is missing ?
A component of $E_{k}(x)$ can be represented as

$$
\sum_{u \in \mathbb{F}_{2}^{n}} c_{u}(k) x^{u}
$$

and assume that for any $v \succ u, c_{v}(k)=0$.
Then what is the possible degree of $E_{k}(x)$ in $x$ ?

## Going Further

What is missing?
A component of $E_{k}(x)$ can be represented as

$$
\sum_{u \in \mathbb{F}_{2}^{n}} c_{u}(k) x^{u}
$$

and assume that for any $v \succ u, c_{v}(k)=0$.
Then what is the possible degree of $E_{k}(x)$ in $x$ ?

$$
f(x)=x_{0} x_{1} x_{2} x_{3} x_{4} x_{6}+x_{3}+x_{4} x_{5}+x_{6}
$$

## Going Further

What is missing ?
A component of $E_{k}(x)$ can be represented as

$$
\sum_{u \in \mathbb{F}_{2}^{n}} c_{u}(k) x^{u}
$$

and assume that for any $v \succ u, c_{v}(k)=0$.
Then what is the possible degree of $E_{k}(x)$ in $x$ ?

$$
f(x)=x_{0} x_{1} x_{2} x_{3} x_{4} x_{6}+x_{3}+x_{4} x_{5}+x_{6}
$$

Upper bound is not enough : lower bound [HLLT 2020]

## REPRESENTATION

## Degree

## DIVISION PROPERTY

## ATTACK STRATEGIES

RANDOM DIRECTIONS

## Specific Higher order derivative

Assume that for any $w \succ u, c_{w}(k)=0$, then let $V=\{v, v \prec u\}$. Then for any $x$,

$$
\sum_{v \in V} E_{k}(x+v)=0
$$

## Specific Higher order derivative

Assume that for any $w \succ u, c_{w}(k)=0$, then let $V=\{v, v \prec u\}$. Then for any $x$,

$$
\sum_{v \in V} E_{k}(x+v)=0
$$

We do not want : "there do not exist a family of monomials of the form $\left\{x^{u}, u \succ u_{0}\right\}$ ".

## Specific Higher order derivative

Assume that for any $w \succ u, c_{w}(k)=0$, then let $V=\{v, v \prec u\}$. Then for any $x$,

$$
\sum_{v \in V} E_{k}(x+v)=0
$$

We do not want : "there do not exist a family of monomials of the form $\left\{x^{u}, u \succ u_{0}\right\}$ ".

> Division Property [Todo 2015]

## Techniques

- Using the representation of the Sbox and the linear layer, this division property can be used for iterated construction
- Mixed Integer Linear Programming
- Lower bound the degree
- Monomial prediction, monomial trails


## Problems

- Easy for one monomial, not easy for all...


## Problems

- Easy for one monomial, not easy for all...
- Not linearly equivalent [LDF, 2020]


## REPRESENTATION

## Degree

DIVISION PROPERTY

Attack strategies

RANDOM DIRECTIONS

## Block ciphers



## Block ciphers



- Proofs of modes, wrt indistinguishability
- Same reasoning for permutation-based constructions.


## BLOCK CIPHERS



## TAKING THE MODE INTO ACCOUNT

Pyjamask-96

- Distinguisher integral over $10+1$ rounds
- 3 rounds in the backward direction (monomial count)


## TAKING THE MODE INTO ACCOUNT

Pyjamask-96

- Distinguisher integral over $10+1$ rounds
- 3 rounds in the backward direction (monomial count)

Considering the mode

- One round in the forward direction
- One round in the backward direction


## TAKING THE MODE INTO ACCOUNT

Pyjamask-96

- Distinguisher integral over $10+1$ rounds
- 3 rounds in the backward direction (monomial count)

Considering the mode

- One round in the forward direction
- One round in the backward direction

Considering the data complexity...

## ON DUPLEX OR STREAM CIPHERS



## ON DUPLEX OR STREAM CIPHERS



What can you do?
REPRESENTATION

## Degree

DIVISION PROPERTY
Attack strategies

RANDOM DIRECTIONS

## RANDOM DIRECTIONS

- Representation of polynomials?


## RANDOM DIRECTIONS

- Representation of polynomials?
- Given a polynomial, find a (non) linear transofrmation that would become an affine space after application?


## RANDOM DIRECTIONS

- Representation of polynomials?
- Given a polynomial, find a (non) linear transofrmation that would become an affine space after application?
- Provide a way to state "every $c_{u}(k)$ is complicated enough" ?


## RANDOM DIRECTIONS

- Representation of polynomials?
- Given a polynomial, find a (non) linear transofrmation that would become an affine space after application?
- Provide a way to state "every $c_{u}(k)$ is complicated enough"?
- Criteria that would be equivalent under the representation of the transformation?


## TAKE AWAY

I'm sure there is a monomial missing somewhere!

