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THE ALGEBRAIC NORMAL FORM

f : Fn
2→ F2 Then f can be uniquely represented as an element of

F2[x0, . . . ,xn−1]/(x
2
0 − x0, . . . ,x

2
n−1− xn−1)

That is a sum of monomials, i.e. for some u ∈ Fn
2

xu =
n−1

∏
i=0

xui
i

Example : x0x2x3 = x10110000

f (x0, . . . ,xn−1) =
⊕
u∈Fn

2

cuxu

with cu ∈ F2.
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TRUTH TABLE AND MONOMIALS

f (x0, . . . ,xn−1) =
⊕
u∈Fn

2

cuxu

f (a) =
⊕
u≺a

cu and cu =
⊕
a≺u

f (a)

Where a≺ u iff supp(a)⊂ supp(u)

Also

wt(u) = #supp(u)
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FUNCTIONS

A function from Fn
2 to Fm

2 is represented as a collection of m boolean
functions, called component functions.

I For permutations, the monomial x0x1 · · ·xn−1 never appears

I A random function has its monomials appearing each with
probability 1/2 in each component function.
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HIGHER-ORDER DIFFERENTIAL ATTACKS [LAI 94]

f (x0, . . . ,xn−1) =
⊕
u∈Fn

2

cuxu

DEFINITION (MULTIVARIATE DEGREE)

d = deg(f ) = max{wt(u),cu = 1}

Distinguisher :
For all linear space V , with dim(V )≥ d +1,

g : x 7→ ∑
v∈V

f (x + v)

is constant to zero.
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DEGREE EVALUATION

At different level :

I For any F and G, deg(F ◦G)≤ deg(F)×deg(G)

I A better bound by A. Canteau and C. Boura [2011, FSE]

I Better upper bound when the structure is specific [CGGLRS,
2020]
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GOING FURTHER

What is missing?

A component of Ek(x) can be represented as

∑
u∈Fn

2

cu(k)x
u

and assume that for any v � u, cv(k) = 0.
Then what is the possible degree of Ek(x) in x ?

f (x) = x0x1x2x3x4x6 + x3 + x4x5 + x6

Upper bound is not enough : lower bound [HLLT 2020]
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SPECIFIC HIGHER ORDER DERIVATIVE

Assume that for any w � u, cw(k) = 0, then let V = {v ,v ≺ u}. Then
for any x ,

∑
v∈V

Ek(x + v) = 0

We do not want :
“there do not exist a family of monomials of the form {xu,u � u0}”.

Division Property [Todo 2015]
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TECHNIQUES

I Using the representation of the Sbox and the linear layer, this
division property can be used for iterated construction

I Mixed Integer Linear Programming

I Lower bound the degree

I Monomial prediction, monomial trails
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PROBLEMS

I Easy for one monomial, not easy for all...

I Not linearly equivalent [LDF, 2020]
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BLOCK CIPHERS

EK

M

C

I Proofs of modes, wrt indistinguishability

I Same reasoning for permutation-based constructions.
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BLOCK CIPHERS
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TAKING THE MODE INTO ACCOUNT

Pyjamask-96

I Distinguisher integral over 10 + 1 rounds

I 3 rounds in the backward direction (monomial count)

Considering the mode

I One round in the forward direction

I One round in the backward direction

Considering the data complexity...
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ON DUPLEX OR STREAM CIPHERS

c

r

Init

K N

⊕

M0

f
⊕

Z0

M1

f

Z1

⊕

M2

f

What can you do?
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RANDOM DIRECTIONS

I Representation of polynomials?

I Given a polynomial, find a (non) linear transofrmation that would
become an affine space after application?

I Provide a way to state "every cu(k) is complicated enough"?

I Criteria that would be equivalent under the representation of the
transformation?
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TAKE AWAY

I’m sure there is a monomial missing somewhere !
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