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Plan of this Section

Stream ciphers / LFSR
m Generic Stream Ciphers
m Filtered LFSR
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Stream ciphi

‘ ‘ Generic Stream Ciphers
Jomial equivaler
Univar

Stream ciphers

m Symmetric cryptography, # block ciphers
m Based on Vernam cipher (one-time pad)
m PRNG

Key [\

PRNG st - keystream

plaintext —)(—B—) ciphertext
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Generic Stream Ciphers

Generic attacks

) m Key recovering
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Stream ciphers / LFSR

’ ‘ Generic Stream Ciphers
onomial equivalence

Generic attacks

0y m Key recovering

X m Initial state recovering
J m Next-bit prediction

f

distinguishing s; from a random
sequence

Always take an internal state twice bigger as the security level (i.e. key size)
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Filtered LFSR

m Nice statistical properties

Linear

St = D iy CiStn—i VE< 0
P =1- 3L cX

P*(X) = x"P(1/X)

We wil take P primitive
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Filtered LFSR

Filtered LFSR
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Filtered LFSR

Filtered LFSR

St

f
I-)| LFSR ]
X 1 1 11 J
[0
St = f(ut+%7 ceey ut+'Yn)

Algebraic Normal Form

n

(X1, X2y« ooy Xp) = Z auHx;”'

ueFy  i=1

=0+ ax; + GX2 + -+ -+ @Xaxe o Gn1Xqcc Xp
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Monomial equivalence

Plan of this Section

Monomial equivalence between filtered LFSR
m LFSR and Finite Field
m Boolean functions and Finite Field
® Monomial Equivalence
m Invariance of Algebraic Attack Complexity
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LFSR and Finite Field

Monomial equivalence

LFSR over a Finite Field

m «: root of the primitive characteristic polynomial in Fan

m |dentify the n-bit words with elements of [F>» with the dual basis of
{La,a?,...,a""}

Proposition

The state of the LFSR at time (t + 1) is the state of the LFSR at time t multiplied
by a.
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The state of the LFSR at time (t + 1) is the state of the LFSR at time t multiplied
by a.

Forallt, X, = Xpa!
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) Boolean functions and Finite Field
Monomial equivalence fonomial Equivalence
riance of Algebraic Attack Complexit

Boolean functions

Proposition (Univariate representation)

2"—1

FX)=>_ax

with A; € Fan

10/28



LFSR and Finite Fielc
) Boolean functions and Finite Field
Monomial equivalence fonomial Equivalence
riance of Algebraic Attack Complexit

Boolean functions

Proposition (Univariate representation)

2"—1

FX)=>_ax
i=0
with A; € Fan

Forallt,s; = F(Xoa')
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Monomial Equivalence

Monomial equivalence [Rgnjom - Cid 2010]

St

Forallt,s; = F(Xpa')
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Monomial equivalence [Rgnjom - Cid 2010]

St

Forallt,s; = F(Xoat) B = ok with ged(k, 2" — 1) =1
)

Letr=k™" mod (2" —1).
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Monomial Equivalence

Monomial equivalence [Rgnjom - Cid 2010]

St

Forallt,s; = F(Xoat) B = ok with ged(k, 2" — 1) =1
)

Letr=k™" mod (2" —1).
If G(X) = F(X") and Yo = X&.
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R
Monomial equivalence

Monomial Equivalence
Univar

Monomial equivalence [Rgnjom - Cid 2010]

Forallt,s; = F(Xoat) B = ok with ged(k, 2" — 1) =1
)

Letr=k™" mod (2" —1).

If G(X) = F(X") and Yo = X&.

Then s, = G(Yof5") = 6(Ypa*) = F(¥pa™) = Flxon) = s
Forallt,s, = s;if Yo = X&

/28



Monomial equivalence

Monomial Equivalence
Univar

Example

F(x) = Tr(x"), with ged(r,2" — 1) = 1:
Let k be suchthatrk =1 mod (2" —1).

St

(9,8 =0") St

— The initial generator is equivalent to a plain LFSR of the same size.
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Stream ciphers SR

Monomial equivalence
Univariate corre s

Monomial Equivalence

Consequence

The security level of a filtered LFSR is the minimal security level for a generator of
its equivalence class.
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Stream ciphers / LFSR

Monomial equivalence

Monomial Equivalence
Univariate cor

Consequence

The security level of a filtered LFSR is the minimal security level for a generator of
its equivalence class.

m Algebraic attacks

m Correlation attacks
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Monomial equivalence
Univariat =

Invariance of Algebraic Attack Complexity

Algebraic attacks

A Linear complexity

Proposition (Massey-Serconek 94)

Let an LFSR of size n filtered by a Boolean function F:
2"—1

FX)=>_ax

Then
AN=#{0<i<2"—2:A #0}
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Monomial equivalence
Univariat =

Invariance of Algebraic Attack Complexity

Algebraic attacks

A Linear complexity

Proposition (Massey-Serconek 94)

Let an LFSR of size n filtered by a Boolean function F:
2"—1

FX)=>_ax

Then
AN=#{0<i<2"—2:A #0}

The monomial equivalence does not affect the complexity of algebraic attacks: see
[Guang Gong, Sondre Rgonjom, Tor Helleseth and Honggang Hu, IEEE-IT 2011,
Discrete Fourier Spectra Attacks]
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Univariate correlation attacks
onclusion

Plan of this Section

Univariate correlation attacks
m Correlation Attacks
m New criteria
m Adivide and conquer attack
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Results

Proposition

The relevant criterion for correlation attacks is the generalized non-linearity and
not the non-linearity.

Proposition

When 2" — 1is not a prime number, we recover the initial state using a divide and
conquer technique.
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Correlation Attacks

Correlation attack [Siegenthaler 85]

LFSR,

LFSR,

—
—

LFSRy_1

LFSRy

—
—

| LFSR; |

Ot
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’t\ ear ; Correlation Attacks
o1 equr

Univariate correlation attacks

Criterion

The criterion behind the correlation attack is the resiliency of f.
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Correlation Attacks

Univariate correlation attacks

Fast correlation attack [Meier - Staffelbach 88]

XO P(y
Ot
N
Compare
T
St
XO Pa
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":‘ S Correlation Attacks
Jomial equ

Univariate correlation attacks

Criterion

The criterion behind the fast correlation attack is the non-linearity of F.
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cipk

romial equiv
Univariate correlation attacks

New criteria

Conclusion

Generalized fast correlation attacks

Xo Pa : G Pk
m Ot > Ot
v L XO
AT
— St St
Xo PoH F Xo
R 2 __
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Correlation Attacks
| New criteria
Univariate correlation attacks A divide and conguer attac

Generalized non-linearity [Gong & Youssef 01]

Non-linearity :
Not anymore !
Relevant security criterion:

Generalized non-linearity

GNL(f) = d(F, {Tr(M*, A € Fan, ged(k,2" —1) =1})
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Correlation Attacks
| New criteria
Univariate correlation attacks A divide and conguer attac

Generalized non-linearity [Gong & Youssef 01]

Non-linearity :
Not anymore !
Relevant security criterion:

Generalized non-linearity
GNL(f) = d(F, {Tr(M*, A € Fan, ged(k,2" —1) =1})

And if k is not coprimeto2” — 1?
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romial equiv

Univariate correlation attacks A divide and conquer attack

Conclusion

A more efficient correlation attack

When ged(k, 2" — 1) > 1and F correlated to G(X) = H(X¥).

[ pH >
Ot

St

St

Xo
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Univariate correlation attacks A divide and conquer attack

Conclusion

A more efficient correlation attack
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[ pH >
Ot

St

St

m Number of states of the small generator: 7, = ord(a¥).
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romial equiv
Univariate correlation a‘ttacks A divide and conquer attack
Conclusion

A more efficient correlation attack

When ged(k, 2" — 1) > 1and F correlated to G(X) = H(X¥).

o AR
Ot
St St
Xo Xo

m Number of states of the small generator: 7, = ord(a¥).

T log(7)
52

m Exhaustive search on X’(‘): Time =
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Correlation Attacks
| criter
Univariate correlation attacks A divide and conquer attack

Recovering the remaining bits of the initial state

Property

We get log,(7x) bits of information on X, where 7, = ord(a):
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Univariate correlation attacks A divide and conquer attack

Recovering the remaining bits of the initial state

Property

We get log,(7x) bits of information on X, where 7, = ord(a):

If we perform two distinct correlation attacks with k; et k;, then we get
log, (lem(7y,, 7%,)) bits of information.
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Conclusion

Plan of this Section

Conclusion
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Conclusion

Some open questions

m Need for new criterion?

Tk

m As 7y is always odd, we havee > 2%,

different k?

m Function F takes a small number of inputs...

but can we have a joint bound for

m Find an efficient algorithm that computes H that approximates F?

m How this criterion is linked to the classical ones ?
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Conclusion

Cryptanalysis of an Equivalent Model of Stream Cipher Espresso

ZHANG Jia-Min, QI Wen-Feng
Information Engineering University, Zhengzhou 450002, China
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Conclusion

Thank You for your attention !
Questions ?
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