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Stream ciphers

Symmetric cryptography, ̸= block ciphers

Based on Vernam cipher (one-time pad)

PRNG

Key IV

PRNG st : keystream

plaintext ciphertext
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Generic attacks

f

X

Φ Key recovering

Initial state recovering

Next-bit prediction

distinguishing st from a random
sequence

Always take an internal state twice bigger as the security level (i.e. key size)
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Linear feedback shiM Register (LFSR)

c1 c2 cn−1 cn

st+n−1 st+n−2 st+1 st

Nice statistical properties

Linear

st+L =
∑n

i=1 cist+n−i, ∀t ≤ 0

P(X) = 1−
∑n

i=1 ciX
i

P∗(X) = XnP(1/X)

We wil take P primitive
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Filtered LFSR

f

X

Φ

LFSR

st

f

st = f(ut+γ1 , . . . , ut+γn)

Algebraic Normal Form

f(x1, x2, . . . , xn) =
∑
u∈Fn

2

au

n∏
i=1

xuii

= a0 + a1x1 + a2x2 + · · ·+ a3x1x2 + · · ·+ a2n−1x1 · · · xn
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LFSR over a Finite Field

α : root of the primitive characteristic polynomial in F2n

Identify the n-bit words with elements of F2n with the dual basis of
{1, α, α2, . . . , αn−1}

c1 c2 cn−1 cn

st+n−1 st+n−2 st+1 st

Proposition

The state of the LFSR at time (t+ 1) is the state of the LFSR at time t multiplied
byα.

For all t, Xt = X0αt
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Boolean functions

Proposition (Univariate representation)

F(X) =
2n−1∑
i=0

AiX
i

with Ai ∈ F2n

For all t, st = F(X0αt)
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Monomial equivalence [Rønjom - Cid 2010]

F

st

(P, α)

n

X0

For all t, st = F(X0αt)

Y0

G

s′t

(Q, β)

n

β = αk with gcd(k, 2n − 1) = 1

Let r = k−1 mod (2n − 1).
If G(X) = F(Xr) and Y0 = Xk0.
Then s′t = G(Y0βt) = G(Y0αkt) = F(Yr0α

rkt) = F(X0αt) = st

For all t, s′t = st if Y0 = Xk0
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Example

F(x) = Tr(xr), with gcd(r, 2n − 1) = 1 :
Let k be such that rk ≡ 1 mod (2n − 1).

Tr(xr)

st

st

(P, α)

(Q, β = αk)

n

n

=⇒ The initial generator is equivalent to a plain LFSR of the same size.
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Consequence

The security level of a filtered LFSR is the minimal security level for a generator of
its equivalence class.

Algebraic attacks

Correlation attacks
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Algebraic attacks

Λ : Linear complexity

Proposition (Massey-Serconek 94)

Let an LFSR of size n filtered by a Boolean function F:

F(X) =
2n−1∑
i=0

AiX
i

Then
Λ = #{0 ≤ i ≤ 2n − 2 : Ai ̸= 0}

Themonomial equivalence does not affect the complexity of algebraic attacks: see
[Guang Gong, Sondre Røonjom, Tor Helleseth and Honggang Hu, IEEE-IT 2011,
Discrete Fourier Spectra Attacks]
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Correlation Attacks
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A divide and conquer attack

Results

Proposition

The relevant criterion for correlation attacks is the generalized non-linearity and
not the non-linearity.

Proposition

When 2n − 1 is not a prime number, we recover the initial state using a divide and
conquer technique.
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Correlation attack [Siegenthaler 85]

LFSRk

LFSRk−1

LFSR2

LFSR1

f st Compare

LFSRi

σt

17 / 28



Overview
Stream ciphers / LFSR
Monomial equivalence

Univariate correlation attacks
Conclusion

Correlation Attacks
New criteria
A divide and conquer attack

Criterion

The criterion behind the correlation attack is the resiliency of f.
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Fast correlation attack [Meier - Staffelbach 88]

Pα F

st

Pα Tr(Ax)

σt

Compare

X0

X0
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Criterion

The criterion behind the fast correlation attack is the non-linearity of F.
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Generalized fast correlation attacks

G(x) = Tr(Axk)

Pα F

st

Pα G
σt

Compare

X0

X0

Pα F

st

X0

Compare

σt

Pαk

Xk0
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Generalized non-linearity [Gong & Youssef 01]

Non-linearity :

Not anymore !

Relevant security criterion:

Generalized non-linearity

GNL(f) = d(f, {Tr(λxk, λ ∈ F2n , gcd(k, 2
n − 1) = 1})

And if k is not coprime to 2n − 1 ?
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A more efficient correlation attack

When gcd(k, 2n − 1) > 1 and F correlated to G(X) = H(Xk).

Pα F

st

Pα G
σt

Compare

X0

X0

Pα F

st

Pαk H
σt

Compare

X0

Xk0

Number of states of the small generator: τk = ord(αk).

Exhaustive search on Xk0: Time = τk log(τk)
ε2
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Recovering the remaining bits of the initial state

Property

We get log2(τk) bits of information on X0 where τk = ord(αk):

If we perform two distinct correlation attacks with k1 et k2, then we get
log2(lcm(τk1 , τk2)) bits of information.
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Some open questions

Need for new criterion?

As τk is always odd, we have ε ≥ τk
2n , but can we have a joint bound for

different k ?

Function F takes a small number of inputs...

Find an efficient algorithm that computes H that approximates F ?

How this criterion is linked to the classical ones ?
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Thank You for your attention !
Questions ?
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