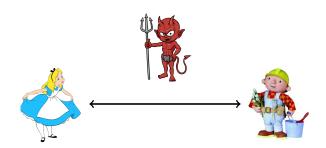
Cryptanalysis of Full Pyjamask-96

Christoph Dobraunig and Yann Rotella and Jan Schoone

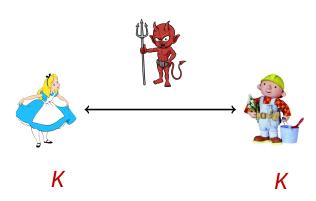
September 4, 2019

Cryptography

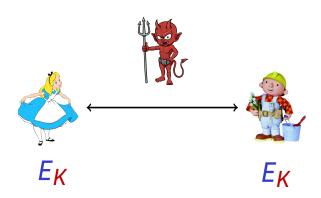


- Authenticity
- Integrity
- Confidentiality

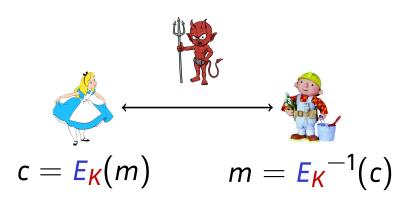
Symmetric Cryptography



Symmetric Cryptography



Symmetric Cryptography



NIST Competition

- 56 submissions: Permutation-based, Block-cipher based, Stream-cipher
- Some issues with domain separations
- Implementations issues found
- 15 attacks
- hardware, software, fault resistance, side channel resistance
- Round 2 announced on Friday: 32 candidates up to September 1, 2020

Structure of this Talk

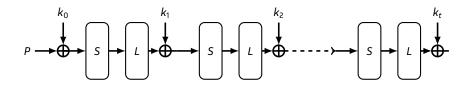
- Introduction
- 2 Pyjamask
- Integral Distinguisher
- 4 Algebraic Cryptanalysis
- 5 Conclusion

Plan of this Section

- 1 Introduction
- 2 Pyjamask
- 3 Integral Distinguisher
- 4 Algebraic Cryptanalysis
- 5 Conclusion

Description

- OCB
- SPN, with 96 and 128 bit length



The round function

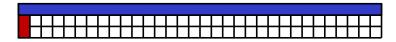
The S-box layer:

- 96-bit: quadratic S-box on 3 bits
- 128-bit: S-box of degree 3, on 4 bits

The linear layer:

- Circulant matrices of size 32 on each row
- vectors defining the matrices of weight 11 or 13

The round function



The S-box layer:

- 96-bit: quadratic S-box on 3 bits
- 128-bit: S-box of degree 3, on 4 bits

The linear layer:

- Circulant matrices of size 32 on each row
- vectors defining the matrices of weight 11 or 13

Plan of this Section

- 1 Introduction
- 2 Pyjamask
- Integral Distinguisher
- 4 Algebraic Cryptanalysis
- 5 Conclusion

Degrees of Pyjamask [Boura, Canteaut IEEE-2013]

Round	1	2	3	4	5	6	7	8	9	10	11	12+
96-bit	2	4	8	16	32	64	80	88	92	94	95	95
128-bit	3	9	27	81	112	122	126	127	127	127	127	127

Integral property on 10 rounds

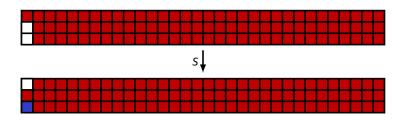
Definition (Higher-order derivative)

Let *F* be a function from \mathbb{F}_2^n into \mathbb{F}_2^m .

$$\Delta_{V}F(x) = \Delta_{a_{1}}\Delta_{a_{2}}\cdots\Delta_{a_{k}}F(x) = \sum_{v\in V}F(x+v)\,, \forall x\in\mathbb{F}_{2}^{n}$$

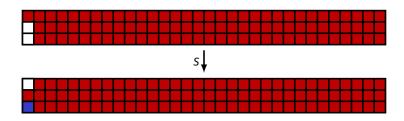
■ Put an affine space of dimension 94 -> Get a constant after 10 rounds.

Extend to 11 rounds



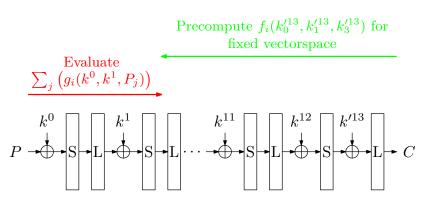
- Value in blue depends on three key bits;
- For one input affine space we recover 3 equations;

Extend to 11 rounds



- Value in blue depends on three key bits;
- For one input affine space we recover 3 equations;
- 7 different affine spaces and 32 S-boxes;
- Gives $(3 \cdot 7 7) \cdot 32 = 448$ equations.

Remaining work



Plan of this Section

- 1 Introduction
- 2 Pyjamask
- 3 Integral Distinguisher
- 4 Algebraic Cryptanalysis
- 5 Conclusion

Classical algebraic cryptanalysis

Integral distinguisher on 11 rounds gives 448 equations.

- We have to solve a system of 448 equations, but we have 3 rounds to pass.
- Three rounds is of degree 8.
- linearization technique:

$$\sum_{i=1}^{8} \binom{96+128}{i} \approx 2^{47}.$$

Counting number of monomials

- add ciphertext and key -> gives 2 monomials
- S-box layer -> gives $2^2 + 6 = 10$ monomials
- Linear layer -> gives $13 \cdot 10 = 130$ monomials
- add key -> gives 92 monomials
- S-box -> $130^2 + 3 \cdot 130$ monomials

This gives 2³⁷ monomials

$$\sum_{x\in V}f(x,k)=0$$

where $|V|=2^{94}$ and $c\in\mathcal{C}.$ For example:

$$\sum_{x\in V}f(x,k)=0$$

where $|V|=2^{94}$ and $c\in\mathcal{C}$.

For example:

$$f(x,k) = x_0 x_1 k_0 + x_1 x_2 k_1 k_2 + x_0 k_1 k_2 + x_0 x_1 k_3 + x_3 k_3 + x_0 k_0$$

$$\sum_{x\in V}f(x,k)=0$$

where $|V|=2^{94}$ and $c\in\mathcal{C}$. For example:

$$f(x,k) = x_0 x_1 k_0 + x_1 x_2 k_1 k_2 + x_0 k_1 k_2 + x_0 x_1 k_3 + x_3 k_3 + x_0 k_0$$

$$[x_0x_1,x_1x_2,x_0,x_3]$$

$$\sum_{x\in V}f(x,k)=0$$

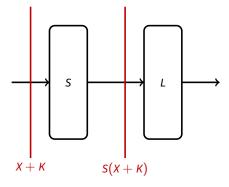
where $|V|=2^{94}$ and $c\in\mathcal{C}$. For example:

$$f(x,k) = x_0 x_1 k_0 + x_1 x_2 k_1 k_2 + x_0 k_1 k_2 + x_0 x_1 k_3 + x_3 k_3 + x_0 k_0$$

$$[x_0x_1,x_1x_2,x_0,x_3]$$

$$\left[k_0,k_1k_2,k_3\right]$$

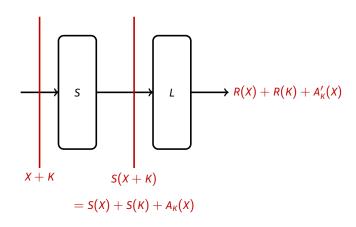
Using quadratic properties



Using quadratic properties



Using quadratic properties



Plan of this Section

- 1 Introduction
- 2 Pyjamask
- 3 Integral Distinguisher
- 4 Algebraic Cryptanalysis
- 5 Conclusion

Conclusion

- Full-round attack: 2¹¹³
- Huge data complexity: 2⁹⁶
- Very small memory complexity: 2²⁰

Introductio Pyjamas Integral Distinguishe Algebraic Cryptanalysi Conclusio

> Thanks! Questions?