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Results

Block ciphers:

Proving Resistance against Invariant attacks, CRYPTO 2017, with C. Beierle,
A. Canteaut and G. Leander.

Stream ciphers and PRNG:

Cryptanalysis of Filter generators, FSE 2016, with A. Canteaut;

Cryptanalysis of FLIP, CRYPTO 2016, with S. Duval and V. Lallemand;

Design of Restricted Boolean functions, ToSC 2017, with C. Carlet and P. Méaux;

Cryptanalysis of Goldreich’s PRG, ASIACRYPT 2018, with G. Couteau, A. Dupin,
P. Méaux and M. Rossi.

Authenticated Encryption:

Cryptanalysis of Ketje, ToSC 2018, with T. Fuhr and M. Naya-Pasencia;

Cryptanalysis of MORUS, ASIACRYPT 2018, with T. Ashur, M. Eichlseder, M. M.
Lauridsen, G. Leurent, B. Minaud, Y. Sasaki and B. Viguier.
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Block Ciphers

Key schedule
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Substitution Permutation Network
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The invariant subspace attack [Leander et al. 11]

Affine subspace V invariant under Ek.

V

Fn
2

V

Fn
2

Ek(V) =V
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The nonlinear invariant attack [Todo, Leander, Sasaki 16]

Partition of Fn
2 invariant under Ek.

S

Fn
2

S

Fn
2

Ek(S) =S or Ek(S) = Fn
2\S

Definition (Invariant)

Let g a Boolean function such that g(x) = 1 iff x ∈ S , then

∀x ∈ Fn
2 , g ◦ Ek(x) + g(x) = c with c = 0 or c = 1

g is called an invariant for Ek.
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Vulnerable Lightweight Ciphers

PRINT-cipher [Leander et al. 2011]

Midori-64 [Guo et al. 2016] [Todo, Leander, Sasaki 2016]

iSCREAM [Leander, Minaud, Rønjom 2015]

SCREAM [Todo, Leander, Sasaki 2016]

NORX v2.0 [Chaigneau et al. 2017]

Simpira v1 [Rønjom 2016]

Haraka v.0 [Jean 2016]
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Goal

Definition (Invariant)

Let g a Boolean function such that g(x) = 1 iff x ∈ S , then

∀x ∈ Fn
2 , g ◦ Ek(x) + g(x) = c with c = 0 or c = 1

g is called an invariant for Ek.

We want to prove the absence of
such invariants g
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The case of SPN ciphers

Finding all invariants for the whole round is computationnaly hard.

Main attacks exploits invariants for S and Addki ◦ L.

S L

S S

k1

S L

S S

k2

S L

S SS

kt

We restrict our study to invariant that are invariants for both S and
Addki ◦ L
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The case of SPN ciphers

S L
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Definition (linear structure)

LS(g) = {α ∈ Fn
2 : x 7→ g(x + α) + g(x) is constant}

Two conditions on g

(ki + kj) has to be a linear structure of g.

LS(g) is invariant under L.
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Simple key schedule

If ki = k + RCi,
Let D = {(RCi + RCj)} and

WL(D) = smallest subspace invariant under L which contains D.

Question

Is there a non-trivial invariant g for the Sbox-layer such that

WL(D) ⊆ LS(g) ?
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The simple case

If dimWL(D) ≥ n − 1, then the invariant attack does not apply.

For example :

Skinny-64 (n = 64). dimWL(D) = 64 3

Prince. dimWL(D) = 56

Mantis-7. dimWL(D) = 42

Midori-64. dimWL(D) = 16
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The general case (dimWL(D) < n − 1)

An invariant gmust satisfyWL(D) ⊆ LS(g).

LS0(g) = {α, ∀x, g(x) + g(α+ x) = 0}
LS1(g) = {α, ∀x, g(x) + g(α+ x) = 1}

Proposition

Let g be an invariant for an n-bit permutation S such that LS0(g) ⊇ Z for some
given subspace Z ⊂ Fn

2 . Then

g is constant on each coset of Z;

g is constant on S(Z).
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The general case (dimWL(D) < n − 1)

Lemma
Let g be an invariant for Addki ◦ L for some ki. Then, for any v ∈ LS(g),
v+ L(v) ∈ LS0(g).

D = {RCi + RCj}
Z = {d+ L(d), d ∈ D}
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The general case

Results on some Lightweight ciphers

Skinny-64 (n = 64). dimWL(D) = 64 3

Prince. dimWL(D) = 56 3

Mantis-7. dimWL(D) = 42 3

Midori-64. dimWL(D) = 16 7
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Why the dimensions are so different ?

Skinny-64 (n = 64). dimWL(D) = 64

Prince. dimWL(D) = 56

Mantis-7. dimWL(D) = 42

Midori-64. dimWL(D) = 16
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If D = {c} (single element)

WL(c) = ⟨Lt(c), t ∈ N⟩

dimWL(c) = smallest d such that there existλ0, ..., λd ∈ F2:

d∑
t=0

λtL
t(c) = 0

dimWL(c) is the degree of the minimal polynomial of c with respect to L

Theorem
There exists c such that dimWL(c) = d if and only if d is the degree of a divisor of
the minimal polynomial of L.

max
c∈Fn

2

dimWL(c) = deg MinL
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Examples

LED. MinL = (X8 + X7 + X5 + X3 + 1)4(X8 + X7 + X6 + X5 + X2 + 1)4

then there exist some c such that dimWL(c) = 64

Skinny-64. MinL = X16 + 1 = (X + 1)16 then there exist some c such that
dimWL(c) = d for any 1 ≤ d ≤ 16

Prince. MinL = (X4 + X3 + X2 + X + 1)2(X2 + X + 1)4(X + 1)4

maxc dimWL(c) = 20

Mantis andMidori. MinL = (X + 1)6

maxc dimWL(c) = 6
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Rational canonical form

When deg(MinL) = n, L is similar to the companion matrix:

C(MinL) =


0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 0 . . . 1
p0 p1 p2 . . . pn−1


More generally, 

C(Q1)
C(Q2)

. . .
C(Qr)


Q1 = MinL, Q2, ... , Qr are the invariant factors of L,
with Qi|Qi−1 for all 1 ≤ i ≤ r.
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Example

For Prince.

MinL(X) = X20 + X18 + X16 + X14 + X12 + X8 + X6 + X4 + X2 + 1

= (X4 + X3 + X2 + X + 1)2(X2 + X + 1)4(X + 1)4

8 invariant factors:

Q1(X) = Q2(X)

= X20 + X18 + X16 + X14 + X12 + X8 + X6 + X4 + X2 + 1

Q3(X) = Q4(X) = X8 + X6 + X2 + 1 = (X + 1)4(X2 + X + 1)2

Q5(X) = Q6(X) = Q7(X) = Q8(X) = (X + 1)2
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Maximizing the dimension ofWL(c1, . . . , ct)

Theorem
Let Q1, Q2, . . . , Qr be the r invariant factors of L. For any t ≤ r,

max
c1,...,ct

dimWL(c1, . . . , ct) =
t∑

i=1

deg Qi.

We need r elements to getWL(D) = Fn
2 .

For Prince.

For t = 5, max dimWL(c1, . . . , c5) = 20 + 20 + 8 + 8 + 2 = 58

We need 8 elements to get the full space.
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For random constants

For t ≥ r,
Pr

c1,...,ct
$←Fn

2

[WL(c1, · · · , ct) = Fn
2]

can be computed from the degrees of the irreducible factors ofMinL and from the
invariant factors of L.

LED: MinL(X) = (X8 + X7 + X5 + X3 + 1)4(X8 + X7 + X6 + X5 + X2 + 1)4

Pr[WL(c) = F64
2 ] = (1 − 2−8)2 ≃ 0.9922
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Probability to achieve the full dimension
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Conclusion

Easy to prevent the attack:
by choosing a linear layer which does not have many invariant factors.
by choosing appropriate round constants

Perspectives:
Use different invariants for the Sbox-layer and the linear layer [Beyne, 2018,
Asiacrypt] ?
Generalized Invariants : g(x+ ai) + g(Ek(x) + aj) = c [Wei, Ye, Wu, Pasalic,
2018, IACR ToSC]
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Thank You
Questions ?
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