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Results

Block ciphers:

® Proving Resistance against Invariant attacks, CRYPTO 2017, with C. Beierle,
A. Canteaut and G. Leander.

Stream ciphers and PRNG:
m Cryptanalysis of Filter generators, FSE 2016, with A. Canteaut;
m Cryptanalysis of FLIP, CRYPTO 2016, with S. Duval and V. Lallemand;
m Design of Restricted Boolean functions, ToSC 2017, with C. Carlet and P. Méaux;

m Cryptanalysis of Goldreich’s PRG, ASIACRYPT 2018, with G. Couteau, A. Dupin,
P. Méaux and M. Rossi.

Authenticated Encryption:
m Cryptanalysis of Ketje, ToSC 2018, with T. Fuhr and M. Naya-Pasencia;

m Cryptanalysis of MORUS, ASIACRYPT 2018, with T. Ashur, M. Eichlseder, M. M.
Lauridsen, G. Leurent, B. Minaud, Y. Sasaki and B. Viguier.
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Substitution Permutation Network
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Structure of this Talk

Context

Introduction and first observations
Proving resistance against the attack
How to choose the round constants

Conclusion
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Introduction and first obs
Proving resistar 15t t

Plan of this Section

Introduction and first observations
m The principle
m Our goal
m Our restriction
m The role of the round constants
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The principle

Introduction and first obse
t th

The invariant subspace attack [Leander et al. 11]

Affine subspace Vinvariant under Ej.

Ex(V) =V
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The principle

The nonlinear invariant attack [Todo, Leander, Sasaki 16]

Partition of [F] invariant under Ej.

I 3
Ek(S) =S or Ek(S) = IF;\S

Definition (Invariant)

Let g a Boolean function such that g(x) = 1iffx € S, then
Vx € F},g 0 Ex(x) + g(x) = cwithc = 0orc =1

g is called an invariant for Ej.
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The principle

Vulnerable Lightweight Ciphers

m PRINT-cipher [Leander et al. 2011]

m Midori-64 [Guo et al. 2016] [Todo, Leander, Sasaki 2016]
m iSCREAM [Leander, Minaud, Renjom 2015]

m SCREAM [Todo, Leander, Sasaki 2016]

m NORXv2.0 [Chaigneau et al. 2017]

m Simpira vl [Regnjom 2016]

m Haraka v.0 [Jean 2016]
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Goal

Definition (Invariant)

Let g a Boolean function such that g(x) = 1iffx € S, then
Vx € F},g 0 Ex(x) + g(x) = cwithc = 0orc =1

g is called an invariant for Ej.

We want to prove the absence of
such invariants g
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Our restriction

The case of SPN ciphers

m Finding all invariants for the whole round is computationnaly hard.

m Main attacks exploits invariants for S and Addy, o L.

We restrict our study to invariant that are invariants for both S and
Addkl. oL
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The role of the round constants

Definition (linear structure)
LS(g) = {a € F} : x — g(x + &) + g(x) is constant }
Two conditions on g

m (ki + k;) has to be a linear structure of g.

m LS(g) is invariant under L.

1/30



Introduction and first ob:
st

L, The role of the round constants

Simple key schedule

|fk, =k + RC,’,
Let D = {(RC; + RC;) } and

W, (D) = smallest subspace invariant under L which contains D.

Question

Is there a non-trivial invariant g for the Sbox-layer such that

w,(p) C Ls(g)?
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Plan of this Section

Proving resistance against the attack
m The simple case
m The general case
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| ! The simple case
Proving resistance against the attack esimplecese

The simple case

If dim W, (D) > n — 1, then the invariant attack does not apply.

For example:

m Skinny-64 (n = 64). dim W, (D) = 64V
m Prince. dim W, (D) = 56
m Mantis-7. dim W, (D) = 42

m Midori-64. dim W, (D) = 16
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nst the attack

The general case

The general case (dim W, (D) < n — 1)

An invariant g must satisfy W, (D) C LS(g).

= LSo(g) = {a, Vx, 9(x) + g(a + x) = 0}
m LSi(g) = {a, ¥x,g9(x) + g(a+x) =1}

Proposition

Let g be an invariant for an n-bit permutation S such that LSq(g) 2 Z for some
given subspace Z C 5. Then
m g is constant on each coset of Z;

m g s constant on S(2).
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C
irst obser s
nst the attack

e The general case

The general case (dim W, (D) < n — 1)

Lemma
Let g be an invariant for Addy, o L for some k;. Then, for any v € LS(g),

v+ L(v) € LSo(g).

D = {RC; + RG;}
m Z={d+L(d),d € D}
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; ; The simple case
Proving resistance against the attack e simp
The general case

Results on some Lightweight ciphers

Skinny-64 (n = 64). dim W, (D) = 64V
Prince. dim W, (D) = 56 v/

Mantis-7. dim W, (D) = 42V

m Midori-64. dim W, (D) = 16 X
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How to choose the round constants

Plan of this Section

How to choose the round constants
m The role of the linear layer
m The choice of the round constants
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The role of the linear layer
The choice of the round constants
How to choose the round constants e chorceofthe rou °

Why the dimensions are so different ?

Skinny-64 (n = 64). dim W, (D) = 64
Prince. dim W, (D) = 56

Mantis-7. dim W, (D) = 42

m Midori-64. dim W, (D) = 16
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The role of the linear layer

p T
How to choose the round

If D = {c} (single element)

Wi(c) = (L'(c),t € N)
dim W, (c) = smallest d such that there exist Xg, ..., Ag € Fa:

d
DAL =0
t=0

dim W, (c) is the degree of the minimal polynomial of c with respect to L

20/30



The role of the linear layer

How to choose the round consta
onclu:

If D = {c} (single element)

Wi(c) = (L'(c),t € N)
dim W, (c) = smallest d such that there exist Xg, ..., Ag € Fa:

d
DAL =0
t=0

dim W, (c) is the degree of the minimal polynomial of c with respect to L

Theorem

There exists ¢ such that dim W, (c) = dif and only if d is the degree of a divisor of
the minimal polynomial of L.

max dim W, (c) = deg Min,
celFg
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o ction and first ob The role of the linear layer

p -
How to choose the round

Examples

m LED.Min, = (X 4+ X + X+ X +1)*(® + X + X°* + X° + X* +1)*
then there exist some ¢ such that dim W, (c) = 64

m Skinny-64. Min, = X'® 4+ 1 = (X 4 1)'® then there exist some ¢ such that
dimW,(c) = dforany1 < d < 16

m Prince. Min, = (X* 4+ X 4+ X* + X + 1)2( + X + 1)*(x + 1)*
max, dim W, (c) = 20

m Mantis and Midori. Min, = (X + 1)®
max, dim W, (c) = 6
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The choice of the round constants

How to choose the round

Rational canonical form

m When deg(Min,;) = n, Lis similar to the companion matrix:

o 1 O 0
0 0 1 0
¢(Min,) =
0O 0 O 1
Po P1 P2 .-+ Pn—
m More generally,
(o))

(@)

c(e)

Q: = Miny, Qy, ..., Q, are the invariant factors of L,
with Q;|Qi—s forall1 < i <r.
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Example

For Prince.

Ming(X) = X +XE+ X+ X+ X2+ X+ X+ X+ X +1
= (X¥*+Xx+X+x+1)P0C+x+1) (x+1)*

8 invariant factors:

a(x) = Q(x
= XXX XXX+ X X1
BX) = X)) =x+xX+x+1=X+1)F+x+1)

(X)) = Q(X) = &(X) = Qs(X) = (x+1)°
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The choice of the round constants

How to choose the rouf

Maximizing the dimension of W, (¢ . « . 5 ¢¢)

Theorem
Let Qi Qz, . - . , Q, be the rinvariant factors of L. Forany t < r,

t
max dimW,(c,...,¢) = Z deg Q;.

@gooog®
i=1

We need r elements to get W (D) = I}

For Prince.
Fort = 5, maxdimW,(¢,...,¢5) =20+20+ 8+ 842 =58

We need 8 elements to get the full space.
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How to choose the roun

The choice of the round constants

Maximum dimension for #£D constants

'7Ct)
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max dim W7y,
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The choice of the round constants

How to choose the round

For random constants

Fort > r,
Pr [Wi(cy:-+ ) =]

ClyeneyCe<—IF3

can be computed from the degrees of the irreducible factors of Min; and from the
invariant factors of L.

LED: Min (X) = (X® + X" + X + X3 +1)*(x® + X" + X° + X5 + x* +1)*

Priw.(c) = F5*] = (1 — 27%)® ~ 0.9922
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.,Ct) = 64)

Pr(dim Wi (cy, ..

The choice of the round constants
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Conclusion

Plan of this Section

Conclusion
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Conclusion

Easy to prevent the attack:
m by choosing a linear layer which does not have many invariant factors.
m by choosing appropriate round constants
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Conclusion

Easy to prevent the attack:
m by choosing a linear layer which does not have many invariant factors.
m by choosing appropriate round constants

Perspectives:
m Use different invariants for the Sbox-layer and the linear layer [Beyne, 2018,
Asiacrypt] ?
m Generalized Invariants: g(x + a;) + g(Ex(x) + a;) = c [Wei, Ye, Wu, Pasalic,
2018, IACR ToSC(]
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Thank You
Questions ?
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