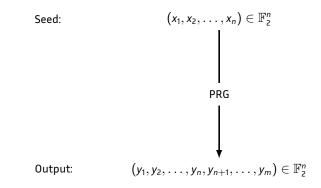
On the Concrete Security of Goldreich's PRG

Yann Rotella Joint work with Geoffroy Couteau, Aurélien Dupin, Pierrick Méaux and Mélissa Rossi

January 31, 2019

Radboud University

PseudoRandom Generators

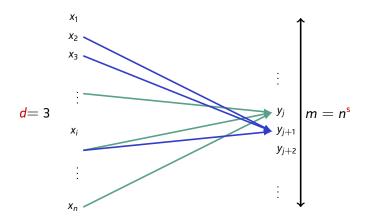


(y_i)_{i≤m} should be indistinguishable from a random string;
 it is hard to recover (x_i)_{i≤n} using the knowledge of (y_i)_{i≤m}.

Structure of this Talk

- 2 A subexponential-time attack
- 3 Algebraic cryptanalysis
- **4** Generalization on all predicates
- 5 Conclusion

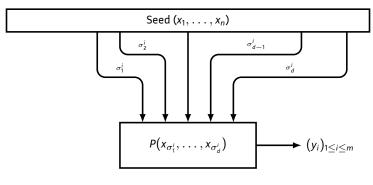
Stretch and locality



Theoretical applications

- Semi Secure computation with constant computational overhead [Ishai et al. STOC 2018, Applebaum et al. CRYPTO 2017]
- MPC-friendly primitives [Albrecht et al. EC 2015, Canteaut et al. FSE 2016, Méaux et al. EC 2016, Grassi et al. ACM-CCS 2016]
- Indistinguishability Obfuscation [Sahai and Waters STOC 2014, Lin and Tessaro CRYPTO 2017]
- Cryptographic Capsules [Boyle et al. ACN-CCS 2017]

Description of Goldreich's PRG



 $m = n^{s}$, s is the stretch.

Parameters

- Stretch s > 1
- Subsets $(\sigma^i)_{i\leq 1}$
- Boolean function (predicate) P
- Locality d

Parameters

- Stretch s > 1?
- Subsets (σⁱ)_{i≤1}?
- Boolean function (predicate) P?
- Locality d?

Subsets

The subsets should be sufficiently expanding: for some k, every k subsets should cover $k + \Omega(n)$ elements of $\{1, ..., n\}$.

Subsets

The subsets should be sufficiently expanding: for some k, every k subsets should cover $k + \Omega(n)$ elements of $\{1, ..., n\}$.

Ok if they are chosen uniformly random

Generic sub-exponential seed recovery

Create a list of all possible values for $(2\varepsilon) * n$ variables.

Generic sub-exponential seed recovery

- Create a list of all possible values for $(2\varepsilon) * n$ variables.
- A value x' of the list can agree on $(1/2 + \varepsilon) * n$ output bits.

Generic sub-exponential seed recovery

- Create a list of all possible values for $(2\varepsilon) * n$ variables.
- A value x' of the list can agree on $(1/2 + \varepsilon) * n$ output bits.
- Final complexity:

$$2^{n^{1-(s-1/2d)}}$$

Generic sub-exponential seed recovery

- Create a list of all possible values for $(2\varepsilon) * n$ variables.
- A value x' of the list can agree on $(1/2 + \varepsilon) * n$ output bits.
- Final complexity:

$$2^{n^{1-(s-1/2d)}}$$

$$s = 1.45$$
 and $d = 5 \Rightarrow 2^{n^{0.955}}$

Predicate criteria

- degree [Goldreich 2000]
- rational degree (algebraic immunity) [Applebaum and Lovett STOC 2016]
 AI(P) > s
- resilience [O'Donnelland Witmer CCC 2014, Applebaum 2015]

res(P) > 2s

locality

$$\left. \begin{array}{c} degree\\ resilience\\ Siegenthaler \end{array}
ight\} \Rightarrow d \geq 5$$

locality

$$\left. \begin{array}{c} degree \\ resilience \\ Siegenthaler \end{array} \right\} \Rightarrow d \geq 5$$

$$P_5(x_1, x_2, x_3, x_4, x_5) = x_1 + x_2 + x_3 + x_4 x_5$$

Our results

• A new subexponential-time attack in $2^{O(n^{2-s})}$.

Our results

- A new subexponential-time attack in $2^{O(n^{2-s})}$.
- Linearization and Gröbner-based attacks.

Our results

- A new subexponential-time attack in $2^{O(n^{2-s})}$.
- Linearization and Gröbner-based attacks.
- Generalization of the subexponential attack to all predicates.

Our results

- A new subexponential-time attack in $2^{O(n^{2-s})}$.
- Linearization and Gröbner-based attacks.
- Generalization of the subexponential attack to all predicates.
- locality and stretch are linked to the size of the seed.

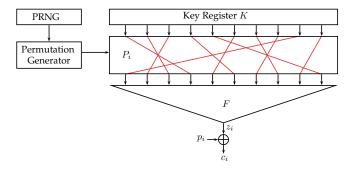
Plan of this Section

2 A subexponential-time attack

- 3 Algebraic cryptanalysis
- 4 Generalization on all predicates

5 Conclusion

Cryptanalysis of FLIP [Duval, Lallemand, Rotella CRYPTO 2016]



$$F(x) = x_1 + x_2 + \dots + x_{k_1} + x_{k_1+1}x_{k_1+2} + \dots + x_{k_2-1}x_{k_2} + x_{k_3} + x_{k_3+1}x_{k_3+2} + \dots + x_{n-14} \dots + x_{n-1}x_n$$

FLIP vs Goldreich's PRG

- FLIP: overdetermined
- Goldreich's PRG: underdetermined

$$P_5(x_1, x_2, x_3, x_4, x_5) = x_1 + x_2 + x_3 + x_4 x_5$$

Collect linear equations

 $\begin{aligned} x_1 + x_4 + x_8 + x_9 x_{11} &= 1 \\ x_{14} + x_5 + x_7 + x_1 x_4 &= 0 \\ x_{13} + x_{10} + x_3 + x_{11} x_9 &= 1 \end{aligned}$

Collect linear equations

$$x_1 + x_4 + x_8 + x_9x_{11} = 1$$

$$x_{14} + x_5 + x_7 + x_1x_4 = 0$$

$$x_{13} + x_{10} + x_3 + x_{11}x_9 = 1$$

We get the following linear equation:

$$x_1 + x_4 + x_8 + x_{13} + x_{10} + x_3 = 0$$

Collect linear equations

$$x_1 + x_4 + x_8 + x_9x_{11} = 1$$

$$x_{14} + x_5 + x_7 + x_1x_4 = 0$$

$$x_{13} + x_{10} + x_3 + x_{11}x_9 = 1$$

We get the following linear equation:

$$x_1 + x_4 + x_8 + x_{13} + x_{10} + x_3 = 0$$

number of collisions $c \in O(n^{2(s-1)})$

Guessing phase

Choose the ℓ variables that appear the most in the quadratic terms, such that you get n − c − ℓ linear equations.

Guessing phase

- Choose the ℓ variables that appear the most in the quadratic terms, such that you get n − c − ℓ linear equations.
- For all possible values of the ℓ bits:

Guessing phase

- Choose the ℓ variables that appear the most in the quadratic terms, such that you get n − c − ℓ linear equations.
- For all possible values of the ℓ bits:
- Solve the correponding linear system of *n* linear equations.

Analysis and complexity

• Complexity:
$$\ell < n^{2-s} \rightarrow \mathcal{O}\left(n^{3}2^{n^{2-s}}\right)$$

Conjectured secure up to $s < 1.5$.

Analysis and complexity

- **Complexity:** $\ell < n^{2-s} \rightarrow \mathcal{O}\left(n^3 2^{n^{2-s}}\right)$ Conjectured secure up to s < 1.5.
- The equations might be linearly dependent (almost never the case).
 This leads to a strong distinguisher and allows to determine if the Guess is right or wrong.

Analysis and complexity

- Complexity: $\ell < n^{2-s} \rightarrow \mathcal{O}\left(n^{3}2^{n^{2-s}}\right)$ Conjectured secure up to s < 1.5.
- The equations might be linearly dependent (almost never the case).
 This leads to a strong distinguisher and allows to determine if the Guess is right or wrong.
- If the equations aren't linearly dependent, then we solve a full rank linear system of size n.

Table: Average number of collisions

n	256	512	1024	2048	4096
s = 1.45	142	269	506	946	1771
s = 1.4	83	145	254	442	773
s = 1.3	28	42	64	97	147

Table: Theoretical number of guesses (worst case)

n	256	512	1024	2048
s = 1.45	4	7	11	18
s = 1.4	9	15	23	37
s = 1.3	20	34	56	94

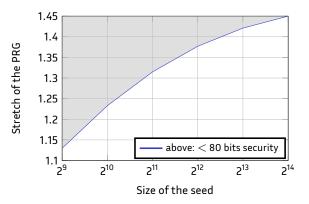
Table: Experimental number of guesses (average)

Table: Complexity of our attack.

n	256	512	1024	2048	4096
s = 1.45	4	6	9	14	21
s = 1.4	6	11	17	27	44
s = 1.3	13	23	39	65	110

	512	1024	2048	4096
< 2 ⁸⁰	1.120	1.215	1.296	1.361
< 2 ¹²⁸	1.048	1.135	1.222	1.295

Complexity



Plan of this Section

- 2 A subexponential-time attack
- 3 Algebraic cryptanalysis
- 4 Generalization on all predicates

5 Conclusion

Collecting equations of degree 2

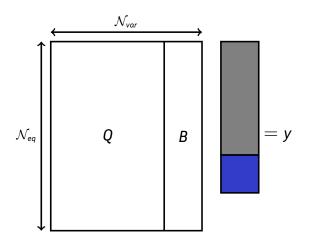
$$x_{i_1} + x_{i_2} + x_{i_3} + x_{i_4} x_{i_5} = y_i \tag{1}$$

$$x_{j_1} + x_{j_2} + x_{j_3} + x_{j_4} x_{j_5} = y_j$$
⁽²⁾

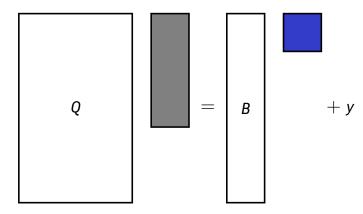
using (1):
$$x_{i_4}x_{i_1} + x_{i_4}x_{i_2} + x_{i_4}x_{i_3} + x_{i_4}x_{i_5} = x_{i_4}y_i$$

if $x_{i_4}x_{i_5} = x_{j_4}x_{j_5}$: $x_ky_i + x_ky_j = x_kx_{i_1} + x_kx_{i_2} + x_kx_{i_3} + x_kx_{j_1} + x_kx_{j_2} + x_kx_{j_3}$
if $x_{i_4} = x_{j_4}$: $x_{j_5} \times (1) + x_{i_5} \times (2)$

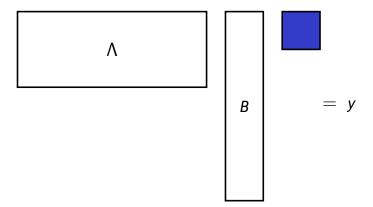
Solving the system



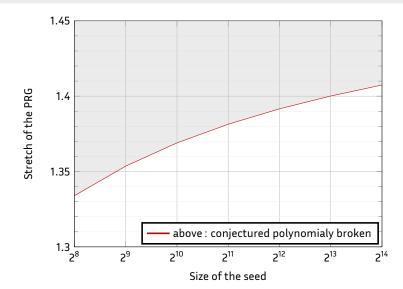
Solving the system



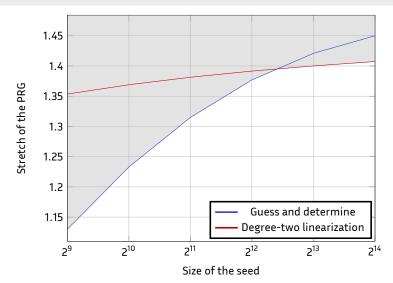
Solving the system



Experimental results



Results on P₅



Plan of this Section

- 2 A subexponential-time attack
- 3 Algebraic cryptanalysis
- 4 Generalization on all predicates

5 Conclusion

General sub-exponential time attack

$$P = x_1 + x_2 + \cdots + x_{\ell} + f(x_{\ell+1}, \ldots, x_d)$$

 $k = d - \ell \Rightarrow$

r-bit fixing Algebraic Immunity [MJSC, EC 2016]

 $\min_{(b,i)} \bigl(\mathsf{AI}\bigl(f_{(b,i)}\bigr) \bigr)$

where bits at positions *i* are fixed.

For example, if $f(x_1, x_2, x_3, x_4, x_5) = x_1 + x_2 x_3 x_4 + x_5$, then

$$f_{(1,2),(0,1)} = x_3 x_4 + x_5$$

Improvement

Fixing *j* bits on a predicate of the form

$$P = x_1 + x_2 + \cdots + x_\ell + f(x_{\ell+1}, \ldots, x_d)$$

gives equations of degree smaller than

$$\left\lceil \frac{k-j}{2} \right\rceil + 1$$

Improvement

Fixing *j* bits on a predicate of the form

$$P = x_1 + x_2 + \cdots + x_{\ell} + f(x_{\ell+1}, \ldots, x_d)$$

gives equations of degree smaller than

$$\left\lceil \frac{k-j}{2} \right\rceil + 1$$

If the stretch is "big enough", we can improve the previous generic attack using bounds on *r*-bit fixing algebraic immunity.

Application to XOR-MAJ predicates

Fix enough bits to 0 (or 1).

Recover linear equations.

$$O\left(2^{n^{1-\frac{s-1}{k/2+1}}}\right)$$

Polynomial Attack (AL theorem improvement)

Let N_e be the dimension of the vectorspace of annihilators of degree e, then if

$$\mathsf{s} \ge \mathsf{e} - rac{\log(N_e)}{\log(n))}$$

then there exists a polynomial-time algorithm that breaks the PRG.

Plan of this Section

- 2 A subexponential-time attack
- 3 Algebraic cryptanalysis
- 4 Generalization on all predicates

5 Conclusion

Conclusion

- First concrete parameters given.
- Symmetric Cryptanalysis can be applied to theoretical constructions.
- Several techniques that do not capture the same phenomenon.
- If s is close to 1.5, then the seed size has to be very big.
- New theorems and criteria on predicates.

Perspectives

- Link between expander graphs, first attack (Guess-and-Determine) and second attack (Gröbner).
- Capture the Gröbner success phenomenon.
- Find best predicate ?

> Thank You ! Questions ?