ntext	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP

Boolean functions with restricted input and their robustness; application to the FLIP cipher

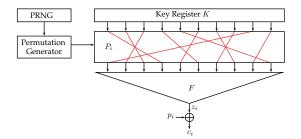
Claude Carlet, Pierrick Méaux, Yann Rotella

Laga, Paris 8 and 13, CNRS, France ENS Paris, France Inria - SECRET, Paris, France

FSE 2018

Context	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP
•				

Context: FLIP [Méaux et al., Eurocrypt 2016]



$$F(x) = x_1 + x_2 + \dots + x_{i_1} + x_{i_1+1}x_{i_1+2} + x_{i_1+3}x_{i_1+4} + \dots + x_{i_2-1}x_{i_2} + x_{i_2+1} + x_{i_2+2}x_{i_2+3} + x_{i_2+4}x_{i_2+5}x_{i_2+6} + \dots + x_{n-k}x_{n-k+1}\dots + x_n$$

Warning

The input of F has always the same Hamming weight.

Context O	Balancedness ●oooooooo	Non-linearity	Algebraic Immunity	Back to FLIP
Example				

Context O	Balancedness o●ooooooo	Non-linearity	Algebraic Immunity	Back to FLIP
Example				

$$w_H(x) = 0 \ 1 \ 2 \ 3 \ 4$$

Context ○	Balancedness oo●oooooo	Non-linearity	Algebraic Immunity	Back to FLIP
Definiti	ons			

Definition (Weightwise Perfectly Balanced Functions)

$$f \text{ is WPB } \Leftrightarrow w_H(f)_k = \frac{\binom{n}{k}}{2}, \ \forall \ 0 < k < n$$
$$\Rightarrow \text{ only if } n = 2^{\ell}$$

Context ○	Balancedness oo●oooooo	Non-linearity	Algebraic Immunity	Back to FLIP
Definiti	ons			

Definition (Weightwise Perfectly Balanced Functions)

$$f \text{ is WPB } \Leftrightarrow w_H(f)_k = \frac{\binom{n}{k}}{2}, \ \forall \ 0 < k < n$$
$$\Rightarrow \text{ only if } n = 2^{\ell}$$

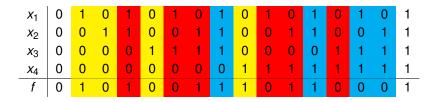
$$f(0,...,0) = 0; \quad f(1,...,1) = 1.$$

Context ○	Balancedness ○○●○○○○○○○	Non-linearity	Algebraic Immunity	Back to FLIP
Definit	ions			

Definition (Weightwise Perfectly Balanced Functions)

$$f \text{ is WPB } \Leftrightarrow w_H(f)_k = \frac{\binom{n}{k}}{2}, \ \forall \ 0 < k < n$$
$$\Rightarrow \text{ only if } n = 2^{\ell}$$

$$f(0,...,0) = 0; \quad f(1,...,1) = 1.$$



O O	Balancedness ○○○●○○○○○	Non-linearity	Algebraic Immunity	Back to FLIP
Definiti	ions			

Definition (Weightwise Almost Perfectly Balanced Functions)

$$f \text{ is WAPB } \Leftrightarrow w_H(f)_k \in \left\{ \frac{\binom{n}{k}}{2}, \frac{\binom{n}{k} \pm 1}{2} \right\}, \ \forall \ 0 < k < n$$

O O	Balancedness oooo●oooo	Non-linearity	Algebraic Immunity	Back to FLIP

ANF of weightwise perfectly balanced functions

If f is WPB Boolean function of n variables, then its ANF has

- exactly *n*/2 monomials of degree 1;
- at least *n*/4 monomials of degree 2;
- at least one monomial of degree n/2.

If f is a WAPB Boolean function of n variables, then its ANF has

- exactly *n*/2 monomials of degree 1 if *n* is even;
- (n-1)/2 or (n+1)/2 monomials of degree 1 if *n* is odd;
- at least $\lfloor n/4 \rfloor$ monomials of degree 2.

Context ○	Balancedness ○○○○○○●○○	Non-linearity	Algebraic Immunity	Back to FLIP	
Constructions					

Let
$$n = 2^{\ell}$$
 and f, g WPB functions with $2^{\ell-1}$ variables, then

$$F(x,y) = f(x) + g(y)$$

is not WPB.

Context ○	Balancedness ○○○○○○○●○	Non-linearity	Algebraic Immunity	Back to FLIP
Constr	ructions			

Let $n = 2^{\ell}$, f, f', g: WPB functions of $2^{\ell-1}$ variables g': any function of $2^{\ell-1}$ variables, then

$$F(x,y) = f(x) + g(y) + (f(x) + f'(x))g'(y) + \prod_{i=1}^{n} x_i$$

is a WPB function with 2^{ℓ} variables.

Context ○	Balancedness ○○○○○○○●○	Non-linearity	Algebraic Immunity	Back to FLIP
Constr	uctions			

Let $n = 2^{\ell}$, *f*, *f'*, *g*: WPB functions of $2^{\ell-1}$ variables *g'*: any function of $2^{\ell-1}$ variables, then

$$F(x,y) = f(x) + g(y) + (f(x) + f'(x))g'(y) + \prod_{i=1}^{n} x_i$$

is a WPB function with 2^{ℓ} variables.

Proof.

Fix *y*. Then F(x, y) = f(x) + g(y) or f'(x) + g(y). Problem: when $w_H(x) = 0$ or $n \Rightarrow$ add $\prod_{i=1}^n x_i$

Context	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP
	00000000			

For n = 16: $f_2(x_1, x_2) = x_1$ is WPB

Context	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP
	00000000			

For n = 16: $f_2(x_1, x_2) = x_1$ is WPB $\Rightarrow f_4(x_1, x_2, x_3, x_4) = f_2(x_1, x_2) + f_2(x_3, x_4) + x_1x_2 = x_1 + x_3 + x_1x_2$

Context	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP
	00000000			

For
$$n = 16$$
:
 $f_2(x_1, x_2) = x_1$ is WPB
 $\Rightarrow f_4(x_1, x_2, x_3, x_4) = f_2(x_1, x_2) + f_2(x_3, x_4) + x_1x_2 = x_1 + x_3 + x_1x_2$
 $\Rightarrow f_8(x_1, ..., x_8) = f_4(x_1, ..., x_4) + f_4(x_5, ..., x_8) + x_1x_2x_3x_4$

Context	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP
	00000000			

For
$$n = 16$$
:
 $f_2(x_1, x_2) = x_1$ is WPB
 $\Rightarrow f_4(x_1, x_2, x_3, x_4) = f_2(x_1, x_2) + f_2(x_3, x_4) + x_1 x_2 = x_1 + x_3 + x_1 x_2$
 $\Rightarrow f_8(x_1, ..., x_8) = f_4(x_1, ..., x_4) + f_4(x_5, ..., x_8) + x_1 x_2 x_3 x_4$
 $\Rightarrow f_8(x_1, ..., x_8) = x_1 + x_3 + x_5 + x_7 + x_1 x_2 + x_5 x_6 + x_1 x_2 x_3 x_4$

Context	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP
	00000000			

For
$$n = 16$$
:
 $f_2(x_1, x_2) = x_1$ is WPB
 $\Rightarrow f_4(x_1, x_2, x_3, x_4) = f_2(x_1, x_2) + f_2(x_3, x_4) + x_1x_2 = x_1 + x_3 + x_1x_2$
 $\Rightarrow f_8(x_1, ..., x_8) = f_4(x_1, ..., x_4) + f_4(x_5, ..., x_8) + x_1x_2x_3x_4$
 $\Rightarrow f_8(x_1, ..., x_8) = x_1 + x_3 + x_5 + x_7 + x_1x_2 + x_5x_6 + x_1x_2x_3x_4$
 $\Rightarrow f_{16}(x_1, ..., x_{16}) = f_8(x_1, ..., x_8) + f_8(x_9, ..., x_{16}) + x_1x_2x_3x_4x_5x_6x_7x_8$

Context	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP
	00000000			

For
$$n = 16$$
:
 $f_2(x_1, x_2) = x_1$ is WPB
 $\Rightarrow f_4(x_1, x_2, x_3, x_4) = f_2(x_1, x_2) + f_2(x_3, x_4) + x_1x_2 = x_1 + x_3 + x_1x_2$
 $\Rightarrow f_8(x_1, ..., x_8) = f_4(x_1, ..., x_4) + f_4(x_5, ..., x_8) + x_1x_2x_3x_4$
 $\Rightarrow f_8(x_1, ..., x_8) = x_1 + x_3 + x_5 + x_7 + x_1x_2 + x_5x_6 + x_1x_2x_3x_4$
 $\Rightarrow f_1(x_1, ..., x_{16}) = f_8(x_1, ..., x_8) + f_8(x_9, ..., x_{16}) + x_1x_2x_3x_4x_5x_6x_7x_8$

$$f_{16}(x) = x_1 + x_3 + x_5 + x_7 + x_9 + x_{11} + x_{13} + x_{15} + x_1 x_2 + x_5 x_6 + x_9 x_{10} + x_{13} x_{14} + x_1 x_2 x_3 x_4 + x_9 x_{10} x_{11} x_{12} + x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8$$

Context	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP
	00000000			

For
$$n = 16$$
:
 $f_2(x_1, x_2) = x_1$ is WPB
 $\Rightarrow f_4(x_1, x_2, x_3, x_4) = f_2(x_1, x_2) + f_2(x_3, x_4) + x_1x_2 = x_1 + x_3 + x_1x_2$
 $\Rightarrow f_8(x_1, ..., x_8) = f_4(x_1, ..., x_4) + f_4(x_5, ..., x_8) + x_1x_2x_3x_4$
 $\Rightarrow f_8(x_1, ..., x_8) = x_1 + x_3 + x_5 + x_7 + x_1x_2 + x_5x_6 + x_1x_2x_3x_4$
 $\Rightarrow f_{16}(x_1, ..., x_{16}) = f_8(x_1, ..., x_8) + f_8(x_9, ..., x_{16}) + x_1x_2x_3x_4x_5x_6x_7x_8$

$$f_{16}(x) = x_1 + x_3 + x_5 + x_7 + x_9 + x_{11} + x_{13} + x_{15} + x_1 x_2 + x_5 x_6 + x_9 x_{10} + x_{13} x_{14} + x_1 x_2 x_3 x_4 + x_9 x_{10} x_{11} x_{12} + x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8$$

 \Rightarrow 8 monomials of degree 1, 4 monomials of degree 2, 1 monomial of degree 8.

Context	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP
		0000		
Definit	ion			

Definition

$$\mathsf{NL}(f) = \min_{\deg \ell \leq 1} w_H(f + \ell)$$

Context ○	Balancedness	Non-linearity ●೦೦೦	Algebraic Immunity	Back to FLIP
Definitio	on			

Definition

$$\mathsf{NL}(f) = \min_{\deg \ell \leq 1} w_H(f + \ell)$$

Definition

For any $\mathcal{S} \subseteq \mathbb{F}_2^n$,

$$\mathsf{NL}_{\mathcal{S}}(f) = \min_{\deg \ell \leq 1} w_H(f+\ell)_{\mathcal{S}}$$

Context ○	Balancedness	Non-linearity ○●○○	Algebraic Immunity	Back to FLIP
_				

$$\sigma_2(x_1, x_2, x_3, x_4) = x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4$$

Context ○	Balancedness	Non-linearity ○●○○	Algebraic Immunity	Back to FLIP
_				

$$\sigma_2(x_1, x_2, x_3, x_4) = x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4$$

 σ_2 is a bent function (NL(σ_2) = 6)

Context ○	Balancedness	Non-linearity ○●○○	Algebraic Immunity	Back to FLIP
_				

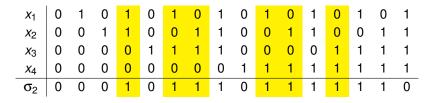
$$\sigma_2(x_1, x_2, x_3, x_4) = x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4$$

 σ_2 is a bent function (NL(σ_2) = 6)

<i>x</i> ₁	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
<i>x</i> ₂	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
<i>X</i> 3	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
x ₁ x ₂ x ₃ x ₄	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
σ_2	0	0	0	1	0	1	1	1	0	1	1	1	1	1	1	0

$$\sigma_2(x_1, x_2, x_3, x_4) = x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4$$

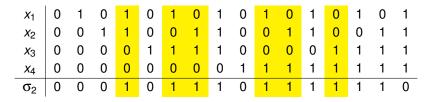
 σ_2 is a bent function (NL(σ_2) = 6)



Context	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP
		0000		
_				

$$\sigma_2(x_1, x_2, x_3, x_4) = x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4$$

 σ_2 is a bent function (NL(σ_2) = 6)



 $NL_2(\sigma_2)=0$

Context	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP
		0000		

Non-linearity over fixed Hamming weight

$$\mathcal{S}_{n,k} = \{x \in \mathbb{F}_2^n, w_H(x) = k\}$$

Proposition

For $(n, k) \neq (50, 3)$ nor (50, 47), we have:

$$\mathsf{NL}_{\mathcal{S}_{n,k}}(f) < \frac{\binom{n}{k}}{2} - \frac{1}{2}\sqrt{\binom{n}{k}}$$

Context	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP
		0000		

Non-linearity over fixed Hamming weight

$$\mathcal{S}_{n,k} = \{x \in \mathbb{F}_2^n, w_H(x) = k\}$$

Proposition

For $(n, k) \neq (50, 3)$ nor (50, 47), we have:

$$\mathsf{NL}_{\mathcal{S}_{n,k}}(f) < \frac{\binom{n}{k}}{2} - \frac{1}{2}\sqrt{\binom{n}{k}}$$

- Improved in [S. Mesnager, 2017].
- Related to the study of punctured Reed and Muller codes [Dumer, Kapralova, 2017].

Context ○	Balancedness	Non-linearity	Algebraic Immunity ●○	Back to FLIP
Definitior	า			

Algebraic Immunity over S

Let f be defined over a set S:

 $AI_{\mathcal{S}}(f) = \min\{\deg(g), g \neq 0 \text{ over } \mathcal{S} | gf = 0 \text{ or } g(f+1) = 0 \text{ over } \mathcal{S} \}$

Context ○	Balancedness	Non-linearity	Algebraic Immunity ●○	Back to FLIP
Definitior	า			

Algebraic Immunity over S

Let f be defined over a set S:

 $AI_{\mathcal{S}}(f) = \min\{\deg(g), g \neq 0 \text{ over } \mathcal{S} | gf = 0 \text{ or } g(f+1) = 0 \text{ over } \mathcal{S} \}$

$$f(x_1, x_2, x_3, x_4) = 1 + x_1 + x_2 x_3$$
, $AI(f) = 2$

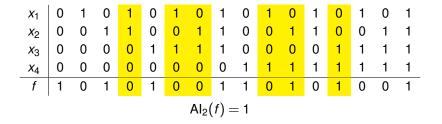
Context ○	Balancedness	Non-linearity	Algebraic Immunity ●○	Back to FLIP
Definitior	า			

Algebraic Immunity over S

Let f be defined over a set S:

 $AI_{\mathcal{S}}(f) = \min\{\deg(g), g \neq 0 \text{ over } \mathcal{S} | gf = 0 \text{ or } g(f+1) = 0 \text{ over } \mathcal{S} \}$

$$f(x_1, x_2, x_3, x_4) = 1 + x_1 + x_2 x_3$$
, $AI(f) = 2$



Context ○	Balancedness	Non-linearity	Algebraic Immunity ○●	Back to FLIP

Let f be a function of n variables.

Let *g* be a function of *m* variables.

Let F(x, y) = f(x) + g(y), then for any $k \ge n$ and $k \le m$,

Context	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP
			0•	

Let *f* be a function of *n* variables. Let *g* be a function of *m* variables. Let F(x, y) = f(x) + g(y), then for any $k \ge n$ and $k \le m$, $AI_k(F) > AI(f) - deg(g)$

while

Context	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP
			00	

Let *f* be a function of *n* variables. Let *g* be a function of *m* variables. Let F(x,y) = f(x) + g(y), then for any $k \ge n$ and $k \le m$,

 $AI_k(F) \ge AI(f) - deg(g)$

while

$$AI(F) \ge max(AI(f), AI(g))$$

Context	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP
			0•	

Let *f* be a function of *n* variables. Let *g* be a function of *m* variables. Let F(x, y) = f(x) + g(y), then for any $k \ge n$ and $k \le m$,

 $AI_k(F) \ge AI(f) - deg(g)$

while

$$AI(F) \ge max(AI(f), AI(g))$$

Upper bounds

We proved upper bounds on $AI_k(f)$ (see Paper).

Context ○	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP ●000
Bias of	FLIP?			

Range of Hamming weights of the key such that the bias is undetectable for the recommended security level.

Instances	k _{min}	k _{max}
FLIP-530	78	482
FLIP-662	102	621
FLIP-1394	207	1325
FLIP-1704	257	1643

Context ○	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP ○●○○
Non-linea	arity in FLIP.			

Proposition

Let
$$F(x,y) = f(x) + g(y)$$
, then
 $\mathsf{NL}_k(F) \ge \sum_{i=0}^k \binom{n}{i} \mathsf{NL}_{k-i}(g) + \sum_{i=0}^k \mathsf{NL}_i(f) \left(\binom{m}{k-i} - 2\mathsf{NL}_{k-i}(g)\right)$

Range of Hamming weights of the key such that the bias is smaller than 2^{-10} :

Instances	k _{min}	k _{max}
FLIP-530	107	464
FLIP-662	136	556
FLIP-1394	221	1239
FLIP-1704	266	1492

O O	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP ○○●○

Algebraic Immunity in FLIP

We obtain a lower bound on the algebraic immunity of the function used in FLIP (only when *k* is close to n/2):

Instances	AI(f)	Bound of $AI_k(f)$
FLIP-530	9	\geq 4
FLIP-662	15	\geq 6
FLIP-1394	16	\geq 6
FLIP-1704	23	≥ 8

Those bounds are not tight, but they guarantee resistance against algebraic attacks.

Context ○	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP ○○○●
Conclusi	on			

- We defined weightwise (almost) perfectly balanced Boolean functions and provided constructions.
- We defined and gave bounds on Al_k and NL_k.
- We gave properties on direct sums.
- We eventually gave bounds on the exact cryptographic parameters of the 4 FLIP instances.

Context ○	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP
Conclu	sion			

- We defined weightwise (almost) perfectly balanced Boolean functions and provided constructions.
- We defined and gave bounds on Al_k and NL_k.
- We gave properties on direct sums.
- We eventually gave bounds on the exact cryptographic parameters of the 4 FLIP instances.

But... be careful!

Context ○	Balancedness	Non-linearity	Algebraic Immunity	Back to FLIP ○○○●
Conclusi	on			

- We defined weightwise (almost) perfectly balanced Boolean functions and provided constructions.
- We defined and gave bounds on Al_k and NL_k.
- We gave properties on direct sums.
- We eventually gave bounds on the exact cryptographic parameters of the 4 FLIP instances.

But... be careful!

Thank you !