Univariate correlation attacks

Attacks against Filter Generators Exploiting Monomial Mappings

Anne Canteaut & Yann Rotella

Inria - SECRET, Paris, France

FSE 2016

Summary	Monomial equivalence between filtered LFSR	Univariate correlation attacks	Conclusions O
Filtered	LFSR		

- P : the (primitive) characteristic polynomial of the LFSR.
- *f* : nonlinear filtering function.

Algebraic Normal Form

$$f(x_1, x_2, \cdots, x_n) = \sum_{u \in \mathbb{F}_2^n} a_u \prod_{i=1}^n x_i^{u_i}$$

= $a_0 + a_1 x_1 + a_2 x_2 + \cdots + a_3 x_1 x_2 + \cdots + a_{2^n - 1} x_1 \cdots x_n$

	 1		
	 r - 1		٠,
		_	

Univariate correlation attacks

Conclusions

LFSR over a Finite Field

- α : root of the primitive characteristic polynomial in \mathbb{F}_{2^n}
- Identify the *n*-bit words with elements of \mathbb{F}_{2^n} with the dual basis of $\{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$

Proposition

The state of the LFSR at time (t+1) is the state of the LFSR at time t multiplied by α .

Univariate correlation attacks

Conclusions

LFSR over a Finite Field

- α : root of the primitive characteristic polynomial in \mathbb{F}_{2^n}
- Identify the *n*-bit words with elements of \mathbb{F}_{2^n} with the dual basis of $\{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$

Proposition

The state of the LFSR at time (t+1) is the state of the LFSR at time t multiplied by α .

For all $t, X_t = X_0 \alpha^t$

Univariate correlation attacks

Conclusions

Boolean functions

Proposition (Univariate representation)

$$F(X) = \sum_{i=0}^{2^n-1} A_i X^i$$

with $A_i \in \mathbb{F}_{2^n}$ given by the discrete Fourier Transform of F

For all $t, s_t = F(X_0 \alpha^t)$

Summary

Monomial equivalence between filtered LFSR

Univariate correlation attacks

Conclusions

Monomial equivalence [Rønjom - Cid 2010]

For all $t, s_t = F(X_0 \alpha^t)$

Summary

Univariate correlation attacks

Conclusions

Monomial equivalence [Rønjom - Cid 2010]

$$\beta = \alpha^k$$
 with gcd $(k, 2^n - 1) = 1$

Summary

Univariate correlation attacks

Conclusions

Monomial equivalence [Rønjom - Cid 2010]

$$\beta = \alpha^{k} \text{ with } \gcd(k, 2^{n} - 1) = 1$$
$$s'_{t} = G(Y_{0}\beta^{t}) = G(Y_{0}\alpha^{kt})$$

Summary

Univariate correlation attacks

Conclusions

Monomial equivalence [Rønjom - Cid 2010]

$$\beta = \alpha^{k} \text{ with } \gcd(k, 2^{n} - 1) = 1$$

$$s'_{t} = G(Y_{0}\beta^{t}) = G(Y_{0}\alpha^{kt})$$
If $G(x) = F(x^{r})$
with $rk \equiv 1 \mod (2^{n} - 1)$
Then $s'_{t} = F(Y'_{0}\alpha^{t})$

Summary

Univariate correlation attacks

Conclusions

Monomial equivalence [Rønjom - Cid 2010]

For all $t, s_t = F(X_0 \alpha^t)$

$$\beta = \alpha^{k} \text{ with } \gcd(k, 2^{n} - 1) = 1$$

$$s'_{t} = G(Y_{0}\beta^{t}) = G(Y_{0}\alpha^{kt})$$
If $G(x) = F(x^{r})$
with $rk \equiv 1 \mod (2^{n} - 1)$
Then $s'_{t} = F(Y_{0}^{r}\alpha^{t})$

For all $t, s'_t = s_t$ if $Y_0 = X_0^k$

ounna	

Univariate correlation attacks

Conclusions

Example

$$F(x) = \text{Tr}(x^r)$$
, with $gcd(r, 2^n - 1) = 1$:
Let *k* be such that $rk \equiv 1 \mod (2^n - 1)$.

 \Longrightarrow The initial generator is equivalent to a plain LFSR of the same size.

Univariate correlation attacks

Consequence

The security level of a filtered LFSR is the minimal security level for a generator of its equivalence class.

- Algebraic attacks
- Correlation attacks

Univariate correlation attacks

Algebraic attacks

Λ : Linear complexity

Proposition (Massey-Serconek 94)

Let an LFSR of size n filtered by a Boolean function F :

$$F(X) = \sum_{i=0}^{2^n-1} A_i X^i$$

Then

$$\Lambda = \#\{0 \le i \le 2^n - 2 : A_i \ne 0\}$$

The monomial equivalence does not affect the complexity of algebraic attacks [Gong et al. 11]

Summary

Monomial equivalence between filtered LFSR

Univariate correlation attacks

Conclusions

Correlation attack [Siegenthaler 85]

Summary

Univariate correlation attacks

Conclusions

Fast correlation attack [Meier - Staffelbach 88]

Summary

Univariate correlation attacks

Conclusions

Generalized fast correlation attacks

$$G(x) = \operatorname{Tr}(Ax^{k})$$

Univariate correlation attacks

Conclusions

Generalized non-linearity [Gong & Youssef 01]

Relevant security criterion :

Generalized non-linearity

$$\mathsf{GNL}(f) = d(f, \{\mathsf{Tr}(\lambda x^k, \lambda \in \mathbb{F}_{2^n}, \mathsf{gcd}(k, 2^n - 1) = 1\})$$

Univariate correlation attacks

Conclusions

Generalized non-linearity [Gong & Youssef 01]

Relevant security criterion :

Generalized non-linearity

$$\mathsf{GNL}(f) = d(f, \{\mathsf{Tr}(\lambda x^k, \lambda \in \mathbb{F}_{2^n}, \mathsf{gcd}(k, 2^n - 1) = 1\})$$

And if k is not coprime to $2^n - 1$?

Summary

Univariate correlation attacks

Conclusions

A more efficient correlation attack

When $gcd(k, 2^n - 1) > 1$ and *F* correlated to $G(X) = H(X^k)$.

- Number of states of the small generator : $\tau_k = \operatorname{ord}(\alpha^k)$.
- Exhaustive search on X_0^k : Time = $\frac{\tau_k \log(\tau_k)}{\epsilon^2}$

Univariate correlation attacks

Conclusions

Recovering the remaining bits of the initial state

Property

We get $\log_2(\tau_k)$ bits of information on X_0 where $\tau_k = \operatorname{ord}(\alpha^k)$:

Recovering the remaining bits of the initial state

Property

We get $\log_2(\tau_k)$ bits of information on X_0 where $\tau_k = \operatorname{ord}(\alpha^k)$:

If we perform two distinct correlation attacks with k_1 et k_2 , then we get $\log_2(\text{lcm}(\tau_{k_1}, \tau_{k_2}))$ bits of information.

Univariate correlation attacks

Conclusions

First improvement

The complexity

$$\mathsf{Time} = \frac{\tau_k \log(\tau_k)}{\epsilon^2}$$

can be reduced to

$$\mathsf{Time} = au_k \log(au_k) + rac{2\log(au_k)}{arepsilon^2} \;.$$

with a fast Fourier transform [Canteaut - Naya-Plasencia 2012]

Summary

Univariate correlation attacks

Conclusions

Second improvement

$$G(X) = H(X^k)$$
 when H is linear :

- Size of the small LFSR : $L(k) = \operatorname{ord}(2) \mod \tau_k$.
- If L(k) < n and H is linear \longrightarrow fast correlation attack.

Univariate correlation attacks

Conclusions

Conclusion and open questions

Conclusion

- Generalized criterion for *f* besides the generalized non-linearity.
- The attack does not apply when $(2^n 1)$ is prime.

Open questions

- Find good filtering Boolean functions?
- Compute efficiently a good approximation of the filtering function ?

Univariate correlation attacks

Conclusions

Conclusion and open questions

Conclusion

- Generalized criterion for *f* besides the generalized non-linearity.
- The attack does not apply when $(2^n 1)$ is prime.

Open questions

- Find good filtering Boolean functions?
- Compute efficiently a good approximation of the filtering function ?

Thank You for your attention !