Summary	Stream ciphers	LFSR	Monomial equivalence	Univariate correlation attacks	Conclusions

Des nouvelles attaques sur les registres filtrés exploitant la structure des corps finis

Yann Rotella

Inria - SECRET, Paris, France

Séminaire Crypto, Versailles, 26 mai 2016

Summary	Stream ciphers	LFSR	Monomial equivalence	Univariate correlation attacks	Conclusions

- 2 Linear Feedback Shift Registers
- Monomial equivalence between filtered LFSR
- Univariate correlation attacks

Summary	Stream ciphers ●○○	LFSR 000	Monomial equivalence	Univariate correlation attacks	Conclusions
Stream	n ciphers				

- Symetric cryptography, \neq block ciphers
- Based on Vernam cipher (one-time pad)

PRNG

Summary	Stream ciphers ○●○	LFSR 000	Monomial equivalence	Univariate correlation attacks	Conclusions
Stream	n ciphers				

- Block cipher modes of operations (OFB, Counter)
- Specific design (LFSR, NLFSR)
- Internal state
- Large period
- A5/1 A5/2, SNOW

Summary	Stream ciphers	LFSR 000	Monomial equivalence	Univariate correlation attacks	Conclusions
Stream	n cinhers				

- Block cipher modes of operations (OFB, Counter)
- Specific design (LFSR, NLFSR)
- Internal state
- Large period
- A5/1 A5/2, SNOW

Interests

- Small latency
- No padding
- No error propagation
- Cheap

Summary	Stream ciphers ○○●	LFSR 000	Monomial equivalence	Univariate correlation attacks	Conclusions
Gener	ic attacks				

Key recovering

Summary	Stream ciphers ○○●	LFSR 000	Monomial equivalence	Univariate correlation attacks	Conclusions
Gener	ic attacks				

- Key recovering
- Initial state recovering

Summary	Stream ciphers ○○●	LFSR 000	Monomial equivalence	Univariate correlation attacks	Conclusions
Gener	ic attacks				

- Key recovering
- Initial state recovering
- Next-bit prediction

Summary	Stream ciphers ○○●	LFSR 000	Monomial equivalence	Univariate correlation attacks	Conclusions
Gener	ic attacks				

- Key recovering
- Initial state recovering
- Next-bit prediction
- distinguishing *s*_t from a random sequence

Summary	Stream ciphers ○○●	LFSR 000	Monomial equivalence	Univariate correlation attacks	Conclusions
Generi	ic attacks				

- Key recovering
- Initial state recovering
- Next-bit prediction
- distinguishing *s*_t from a random sequence

Always take an internal state twice bigger as the security level (i.e. key size)

Linear feedback shift Register (LFSR)

Definition

Fibonacci representation

Conclusions

Conclusions

Linear feedback shift Register (LFSR)

Definition

Fibonacci representation

Definition

Gallois representation

Summary	Stream ciphers	LFSR	Monomial equivalence	Univariate correlation attacks	Conclusions
		000			

Classical properties of LFSR

Nice statistical properties

Linear

- $s_{t+L} = \sum_{i=1}^{n} c_i s_{t+n-i}, \forall t \leq 0$
- $P(X) = 1 \sum_{i=1}^{n} c_i X^i$
- $P^*(X) = X^n P(1/X)$
- We wil take P primitive

Summary	Stream ciphers	LFSR 00●	Monomial equivalence	Univariate correlation attacks	Conclusions
Filtere	d LFSR				

$$\mathbf{s}_t = f(u_{t+\gamma_1}, \cdots, u_{t+\gamma_n})$$

Summary	Stream ciphers	LFSR ○○●	Monomial equivalence	Univariate correlation attacks	Conclusions
Filtere	d LFSR				

$$s_t = f(u_{t+\gamma_1}, \cdots, u_{t+\gamma_n})$$

Algebraic Normal Form

$$f(x_1, x_2, \cdots, x_n) = \sum_{u \in \mathbb{F}_2^n} a_u \prod_{i=1}^n x_i^{u_i}$$

= $a_0 + a_1 x_1 + a_2 x_2 + \cdots + a_3 x_1 x_2 + \cdots + a_{2^n - 1} x_1 \cdots x_n$

Summary	Stream ciphers	LFSR Monomial equivalence	Univariate correlation attacks	Conclusions	
			00000		
LEOD		sita Ei	ماط		

• α : root of the primitive characteristic polynomial in \mathbb{F}_{2^n}

• Identify the *n*-bit words with elements of \mathbb{F}_{2^n} with the dual basis of $\{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$

Proposition

The state of the LFSR at time (t+1) is the state of the LFSR at time t multiplied by α .

Summary	Stream ciphers	LFSR 000	Monomial equivalence ●○○○○○	Univariate correlation attacks	Conclusions
LFSR	over a Fir	nite Fi	eld		

- α : root of the primitive characteristic polynomial in \mathbb{F}_{2^n}
- Identify the *n*-bit words with elements of \mathbb{F}_{2^n} with the dual basis of $\{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$

Proposition

The state of the LFSR at time (t+1) is the state of the LFSR at time t multiplied by α .

For all t, $X_t = X_0 \alpha^t$

Summary	Stream ciphers	LFSR 000	Monomial equivalence ○●○○○○	Univariate correlation attacks	Conclusions
Boole	an functio	ons			

Proposition (Univariate representation)

$$F(X) = \sum_{i=0}^{2^n-1} A_i X^i$$

with $A_i \in \mathbb{F}_{2^n}$ given by the discrete Fourier Transform of F

Summary	Stream ciphers	LFSR 000	Monomial equivalence ○●○○○○	Univariate correlation attacks	Conclusions
Boolea	an functio	ons			

Proposition (Univariate representation)

$$F(X) = \sum_{i=0}^{2^n-1} A_i X^i$$

with $A_i \in \mathbb{F}_{2^n}$ given by the discrete Fourier Transform of F

For all $t, s_t = F(X_0 \alpha^t)$

Summary Stream ciphers LFSR Monomial equivalence Univariate correlation attacks Conclusions

Monomial equivalence [Rønjom - Cid 2010]

For all $t, s_t = F(X_0 \alpha^t)$

Monomial equivalence [Rønjom - Cid 2010]

$$\beta = \alpha^k$$
 with gcd $(k, 2^n - 1) = 1$

Monomial equivalence [Rønjom - Cid 2010]

$$\beta = \alpha^k \text{ with } \gcd(k, 2^n - 1) = 1$$

$$s'_t = G(Y_0\beta^t) = G(Y_0\alpha^{kt})$$

Monomial equivalence [Rønjom - Cid 2010]

$$\beta = \alpha^{k} \text{ with } \gcd(k, 2^{n} - 1) = 1$$

$$s'_{t} = G(Y_{0}\beta^{t}) = G(Y_{0}\alpha^{kt})$$
If $G(x) = F(x^{r})$
with $rk \equiv 1 \mod (2^{n} - 1)$
Then $s'_{t} = F(Y_{0}^{r}\alpha^{t})$

Summary Stream ciphers LFSR Monomial equivalence Univariate correlation attacks Conclusions

Monomial equivalence [Rønjom - Cid 2010]

For all $t, s_t = F(X_0 \alpha^t)$

$$\beta = \alpha^{k} \text{ with } \gcd(k, 2^{n} - 1) = 1$$

$$s'_{t} = G(Y_{0}\beta^{t}) = G(Y_{0}\alpha^{kt})$$
If $G(x) = F(x^{r})$
with $rk \equiv 1 \mod (2^{n} - 1)$
Then $s'_{t} = F(Y_{0}^{r}\alpha^{t})$

For all $t, s'_t = s_t$ if $Y_0 = X_0^k$

Summary	Stream ciphers	LFSR 000	Monomial equivalence ○○○●○○	Univariate correlation attacks	Conclusions
Exam	ple				

$$F(x) = \text{Tr}(x^r)$$
, with $gcd(r, 2^n - 1) = 1$:
Let *k* be such that $rk \equiv 1 \mod (2^n - 1)$.

 \Longrightarrow The initial generator is equivalent to a plain LFSR of the same size.

Summary	Stream ciphers	LFSR	Monomial equivalence	Univariate correlation attacks	Conclusions
			000000		

Consequence

The security level of a filtered LFSR is the minimal security level for a generator of its equivalence class.

Summary	Stream ciphers	LFSR	Monomial equivalence	Univariate correlation attacks	Conclusions
			000000		

Consequence

The security level of a filtered LFSR is the minimal security level for a generator of its equivalence class.

- Algebraic attacks
- Correlation attacks

Summary	Stream ciphers	LFSR 000	Monomial equivalence ○○○○○●	Univariate correlation attacks	Conclusions
Algeb	raic attacl	ks			

Λ : Linear complexity

Proposition (Massey-Serconek 94)

Let an LFSR of size n filtered by a Boolean function F :

$$F(X) = \sum_{i=0}^{2^n-1} A_i X^i$$

Then

$$\Lambda = \#\{0 \le i \le 2^n - 2 : A_i \ne 0\}$$

Summary	Stream ciphers	LFSR 000	Monomial equivalence 00000●	Univariate correlation attacks	Conclusions
Algeb	raic attac	ks			

Λ : Linear complexity

Proposition (Massey-Serconek 94)

Let an LFSR of size n filtered by a Boolean function F :

$$F(X) = \sum_{i=0}^{2^n-1} A_i X^i$$

Then

$$\Lambda = \#\{0 \le i \le 2^n - 2 : A_i \ne 0\}$$

The monomial equivalence does not affect the complexity of algebraic attacks [Gong et al. 11]

Summary Stream ciphers LFSR Monomial equivalence Univariate correlation attacks Conclusions

Correlation attack [Siegenthaler 85]

Summary	Stream ciphers	LFSR 000	Monomial equivalence	Univariate correlation attacks	Conclusions
Criteri	ion				

The criterion besides the correlation attack is the resiliency.

 Summary
 Stream ciphers
 LFSR
 Monomial equivalence
 Univariate correlation attacks
 Conclusions

 000
 000
 000000000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 0

Fast correlation attack [Meier - Staffelbach 88]

Summary	Stream ciphers	LFSR 000	Monomial equivalence	Univariate correlation attacks ○○○●○○○○○○○	Conclusions
Criteri	on				

The criterion besides the fast correlation attack is the **non-linearity**.

Summary	Stream ciphers	LFSR 000	Monomial equivalence	Univariate correlation attacks	Conclusions

Generalized fast correlation attacks

$$G(x) = \operatorname{Tr}(Ax^{k})$$

relation attacks Conclusions

Generalized non-linearity [Gong & Youssef 01]

Relevant security criterion :

Generalized non-linearity

$$\mathsf{GNL}(f) = d(f, \{\mathsf{Tr}(\lambda x^k, \lambda \in \mathbb{F}_{2^n}, \mathsf{gcd}(k, 2^n - 1) = 1\})$$

Summary Stream ciphers LFSR Monomial equivalence Univariate correlation attacks

Conclusions

Generalized non-linearity [Gong & Youssef 01]

Relevant security criterion :

Generalized non-linearity

$$\mathsf{GNL}(f) = d(f, \{\mathsf{Tr}(\lambda x^k, \lambda \in \mathbb{F}_{2^n}, \mathsf{gcd}(k, 2^n - 1) = 1\})$$

And if k is not coprime to $2^n - 1$?

 Summary
 Stream ciphers
 LFSR
 Monomial equivalence
 Univariate correlation attacks
 Conclusions

 000
 000
 000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 0

A more efficient correlation attack

When $gcd(k, 2^n - 1) > 1$ and *F* correlated to $G(X) = H(X^k)$.

 Summary
 Stream ciphers
 LFSR
 Monomial equivalence
 Univariate correlation attacks
 Conclusions

 000
 000
 000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 0

A more efficient correlation attack

When $gcd(k, 2^n - 1) > 1$ and *F* correlated to $G(X) = H(X^k)$.

• Number of states of the small generator : $\tau_k = \operatorname{ord}(\alpha^k)$.

A more efficient correlation attack

When $gcd(k, 2^n - 1) > 1$ and *F* correlated to $G(X) = H(X^k)$.

- Number of states of the small generator : $\tau_k = \operatorname{ord}(\alpha^k)$.
- Exhaustive search on X_0^k : Time = $\frac{\tau_k \log(\tau_k)}{\epsilon^2}$

 Summary
 Stream ciphers
 LFSR
 Monomial equivalence
 Univariate correlation attacks
 Conclusions

 000
 000
 0000000
 0000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Recovering the remaining bits of the initial state

Property

We get $\log_2(\tau_k)$ bits of information on X_0 where $\tau_k = \operatorname{ord}(\alpha^k)$:

 Summary
 Stream ciphers
 LFSR
 Monomial equivalence
 Univariate correlation attacks
 Conclusions

 000
 000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 0

Recovering the remaining bits of the initial state

Property

We get $\log_2(\tau_k)$ bits of information on X_0 where $\tau_k = \operatorname{ord}(\alpha^k)$:

If we perform two distinct correlation attacks with k_1 et k_2 , then we get $\log_2(\text{lcm}(\tau_{k_1}, \tau_{k_2}))$ bits of information.

Summary	Stream ciphers	LFSR 000	Monomial equivalence	Univariate correlation attacks	Conclusions
First in	nproveme	ent			

The complexity

$$\mathsf{Time} = \frac{\tau_k \log(\tau_k)}{\epsilon^2}$$

can be reduced to

$$\mathsf{Time} = au_k \log au_k + rac{2 \log(au_k)}{arepsilon^2} \; .$$

with a fast Fourier transform [Canteaut - Naya-Plasencia 2012]

Summary	Stream ciphers	LFSR	Monomial equivalence	Univariate correlation attacks	Conclusions
				0000000000	

Second improvement

$$G(X) = H(X^k)$$
 when H is linear :

- Size of the small LFSR : $L(k) = \operatorname{ord}(2) \mod \tau_k$.
- If L(k) < n and H is linear \longrightarrow fast correlation attack.

Summary	Stream ciphers	LFSR 000	Monomial equivalence	Univariate correlation attacks	Conclusions
What y	ve really o	do			

- Split the state on the multiplicative subgroups
- recover independantly the information
- gather information

Summary	Stream ciphers	LFSR 000	Monomial equivalence	Univariate correlation attacks	Conclusions
What	we really	do			

- - Split the state on the multiplicative subgroups
 - recover independantly the information
 - gather information

What is the generalization?

Do we generalize the **resiliency**?

Summary	Stream ciphers	LFSR	Monomial equivalence	Univariate correlation attacks	Conclusions
					•0

Conclusion and open questions

Conclusion

- Generalized criterion for *f* besides the generalized non-linearity.
- The attack does not apply when $(2^n 1)$ is prime.

Open questions

- Find good filtering Boolean functions?
- Compute efficiently a good approximation of the filtering function?

Summary	Stream ciphers	LFSR	Monomial equivalence	Univariate correlation attacks	Conclusions
					00

Thank You for your attention !

Summary	Stream ciphers	LFSR	Monomial equivalence	Univariate correlation attacks	Conclusions
					00

Thank You for your attention ! Questions ?