How to use differential trails to attack compression functions

Joan Daemen, Jonhathan Fuchs and Yann Rotella Dagstuhl, Germany

January 21, 2020

Structure of this Talk

- 2 Serial Construction
- 3 Parallel Construction

4 Conclusion

The Serial Construction

Figure: The Serial Construction

Parallel Construction

Figure: The Parallel Construction

Very known facts Real Attack

Plan of this Section

- 2 Serial Construction
 - Very known facts
 - Real Attack

3 Parallel Construction

4 Conclusion

Very known facts Real Attack

Very known facts Real Attack

Very known facts Real Attack

 $\Pr[Collision] = DP(a, b)$

Very known facts Real Attack

Birthday VS Difference

Very known facts Real Attack

Birthday VS Difference

Very known facts Real Attack

•

Using Covering Vector spaces

$$egin{aligned} &\langle (a_1,b_1),(a_2,b_2),\ldots,(a_v,b_v)
angle = V ext{ such that} \ &\sum_{(a,b)\in V}\delta_{a,b} > \delta \end{aligned}$$

By making this strategy:

$$M_{0}, M_{1}$$

$$M_{0} + a_{1}, M_{1} + b_{1}$$

$$M_{0} + a_{2}, M_{1} + b_{2}$$

$$M_{0} + a_{1} + a_{2}, M_{1} + b_{1} + b_{2}$$

$$\vdots$$

$$M_{0} + \sum a_{i}, M_{1} + \sum b_{i}$$

$$M'_{0}, M'_{1}$$

$$M'_{0} + a_{1}, M'_{1} + b_{1}$$

$$M'_{0} + a_{2}, M'_{1} + b_{2}$$

$$M'_{0} + a_{1} + a_{2}, M'_{1} + b_{1} + b_{2}$$

$$\vdots$$

$$M'_{0} + \sum a_{i}, M'_{1} + \sum b_{i}$$

Very known facts Real Attack

Very known facts Real Attack

In Practice: XooDoo

Number of pairs st a': 2¹²

 $\Pr[Collision] = 2^{12} \times 2^{-24}$

Very known facts Real Attack

In Practice: XooDoo

Number of pairs st a': 2^{12}

$$Pr[Collision] = 2^{12} \times 2^{-24}$$
$$= 2^{-12}$$

Very known facts Real Attack

Very known facts Real Attack

Very known facts Real Attack

In Practice: XooDoo

Number of pairs st a': 2^{12}

Catching $b': 2^{12} \times 2^{-12} = 1$

Very known facts Real Attack

In Practice: XooDoo

Number of pairs st a': 2¹²

Catching $b': 2^{12} \times 2^{-12} = 1$ Win wp. 1 with 2^{19} .

Very known facts Real Attack

Security Criteria

If trail $a \mapsto b$ with probability $2^{-w_1-w_2-w_3\cdots-w_r}$, we get collision with probability

Very known facts Real Attack

Security Criteria

If trail $a \mapsto b$ with probability $2^{-w_1-w_2-w_3\cdots-w_r}$, we get collision with probability

$$2^{w_1-w_2-w_3-\cdots-w_{r-1}}$$

using

$$D = 2^{1+w_1+w_r/2}$$

We gain the first round and the half of the last round

Plan of this Section

2 Serial Construction

3 Parallel Construction

New Criteria: Squared pseudo-Walsh Coefficient

Figure: The Parallel Construction

Results

If Keys are independent and uniformly distributed, then

$$\Pr[F(M) = F(M')|M + M' = \Delta]$$

is maximal when Δ has the same value on two blocks exactly.

Results

If Keys are independent and uniformly distributed, then

$$\Pr[F(M) = F(M')|M + M' = \Delta]$$

is maximal when Δ has the same value on two blocks exactly.

The relevant criteria is

$$\max_{a} \sum_{b} (\mathsf{DP}(a, b))^2$$

In iterated construction

Security Criteria

• Complexity: $2^{2w_1+2w_2+\cdots+2w_{r-1}+w_r}$.

Plan of this Section

- 2 Serial Construction
- 3 Parallel Construction

4 Conclusion

Conclusion

Both strategies share the same security criteria:

- The first round doesn't count;
- The last round counts for half.

But...

Conclusion

Both strategies share the same security criteria:

- The first round doesn't count;
- The last round counts for half.

But... The parallel strategy seems to offer twice the security.